DependencyTrack在Ubuntu 24.04上的部署问题分析与解决方案
问题背景
DependencyTrack是一个开源组件分析平台,用于识别项目依赖中的安全风险。最近有用户在Ubuntu 24.04系统上尝试部署DependencyTrack时遇到了启动失败的问题。这个问题特别值得关注,因为Ubuntu 24.04是一个较新的LTS版本,许多用户可能会在升级后遇到类似的兼容性问题。
问题现象
用户在Ubuntu 24.04系统上按照官方文档使用docker-compose方式部署DependencyTrack时,执行docker-compose up -d命令后出现错误。错误信息显示与Docker API版本不兼容有关,具体表现为HTTPConnection.request() got an unexpected keyword argument 'chunked'。
根本原因分析
经过深入分析,这个问题实际上与DependencyTrack本身无关,而是源于Ubuntu 24.04中Docker生态组件的版本兼容性问题。具体表现为:
- 用户使用的是较旧版本的docker-compose(1.29.2)
- 系统安装的是较新版本的Docker引擎(24.0.7)
- 新旧版本之间的API不兼容导致了通信问题
解决方案
要解决这个问题,需要正确安装和配置Docker Compose插件,以下是具体步骤:
- 首先添加Docker官方GPG密钥:
sudo apt-get update
sudo apt-get install ca-certificates curl
sudo install -m 0755 -d /etc/apt/keyrings
sudo curl -fsSL https://download.docker.com/linux/ubuntu/gpg -o /etc/apt/keyrings/docker.asc
sudo chmod a+r /etc/apt/keyrings/docker.asc
- 添加Docker官方APT源:
echo "deb [arch=$(dpkg --print-architecture) signed-by=/etc/apt/keyrings/docker.asc] https://download.docker.com/linux/ubuntu $(. /etc/os-release && echo "$VERSION_CODENAME") stable" | sudo tee /etc/apt/sources.list.d/docker.list > /dev/null
- 更新软件包索引并安装Docker Compose插件:
sudo apt-get update
sudo apt-get install docker-compose-plugin
- 使用新的docker compose命令(注意没有横线)启动DependencyTrack:
sudo docker compose up -d
技术要点解析
-
Docker Compose版本演进:Docker Compose已经从独立的Python工具(docker-compose)演变为Docker引擎的内置功能(docker compose)。新版本使用Go语言重写,性能更好且与Docker引擎集成更紧密。
-
Ubuntu软件包管理:Ubuntu 24.04的默认仓库可能不包含最新的Docker组件,因此需要添加Docker官方仓库来获取最新版本。
-
权限管理:新的安装方法使用了更安全的GPG密钥存储位置(/etc/apt/keyrings)和更严格的权限设置(0755目录权限和a+r文件权限)。
最佳实践建议
-
对于新系统部署,建议直接使用docker compose(V2版本)而非传统的docker-compose。
-
在生产环境中,建议使用固定版本的DependencyTrack镜像,而非latest标签,以确保稳定性。
-
对于Ubuntu系统,推荐通过Docker官方仓库而非Ubuntu仓库安装Docker相关组件,以获得更好的兼容性和更新支持。
-
在部署前,建议检查Docker和Docker Compose的版本兼容性矩阵。
总结
Ubuntu 24.04作为最新的LTS版本,其软件生态正在逐步完善。通过正确安装Docker Compose插件并使用新的命令格式,可以顺利解决DependencyTrack的部署问题。这个问题也提醒我们,在系统升级时需要关注相关工具的版本兼容性,特别是像Docker这样快速发展的技术栈。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
yuanrongopenYuanrong runtime:openYuanrong 多语言运行时提供函数分布式编程,支持 Python、Java、C++ 语言,实现类单机编程高性能分布式运行。Go051
pc-uishopTNT开源商城系统使用java语言开发,基于SpringBoot架构体系构建的一套b2b2c商城,商城是满足集平台自营和多商户入驻于一体的多商户运营服务系统。包含PC 端、手机端(H5\APP\小程序),系统架构以及实现案例中应满足和未来可能出现的业务系统进行对接。Vue00
ebook-to-mindmapepub、pdf 拆书 AI 总结TSX01