首页
/ Qwen2.5-VL模型微调中的Grounding偏差问题分析与解决方案

Qwen2.5-VL模型微调中的Grounding偏差问题分析与解决方案

2025-05-23 15:29:40作者:何将鹤

问题背景

在视觉语言模型Qwen2.5-VL的应用实践中,研究人员发现了一个值得关注的现象:当对7B参数规模的Qwen2.5-VL模型进行grounding任务微调后,模型输出的边界框(bbox)会出现系统性向上偏移的问题。这种偏移呈现出明显的规律性——目标物体在图像中的位置越靠下,bbox的偏移程度就越显著。

问题分析

经过深入的技术排查,发现该问题主要源于两个关键因素:

  1. 坐标系统差异:Qwen2.5-VL与前一版本Qwen2-VL采用了不同的坐标处理机制。Qwen2-VL使用相对坐标系统,将坐标归一化到[0,1000)范围内;而Qwen2.5-VL则改为使用绝对坐标系统,直接处理原始像素坐标。

  2. Transformers库实现问题:更深层次的原因是transformers库中M-RoPE(多维旋转位置编码)实现的兼容性问题,这会导致模型在处理空间位置信息时产生系统性偏差。

解决方案

针对上述问题,研究团队提出了多层次的解决方案:

数据预处理规范

  1. 图像尺寸调整:输入图像应首先调整尺寸,确保宽度和高度都是28的整数倍。这一要求源于模型架构设计中对patch划分的优化考虑。

  2. 坐标转换处理:对于bbox坐标,需要执行以下转换:

    resized_w, resized_h = smart_resize(img_w, img_h)
    new_bbox = bbox / np.array([img_w, img_h, img_w, img_h]) * np.array([resized_w, resized_h, resized_w, resized_h]))
    

技术栈升级

  1. Transformers库更新:必须使用2025年4月4日之后的transformers库版本(commit 37258及之后),该版本修复了M-RoPE实现中的关键问题。

  2. 训练策略调整:当必须使用相对坐标系统时,建议延长训练时间,使模型有足够的学习周期来适应坐标转换。

实践建议

基于实际项目经验,我们总结出以下最佳实践:

  1. 版本控制:确保开发环境中的transformers库保持最新,特别是当使用Qwen2.5-VL进行grounding任务时。

  2. 数据一致性:训练数据和推理数据的预处理流程必须严格一致,包括图像resize策略和坐标转换逻辑。

  3. 模型选择:对于资源受限的场景,验证表明该解决方案同样适用于3B参数规模的模型。

  4. 监控机制:在微调过程中建立bbox偏移量的监控指标,及时发现潜在问题。

技术原理深入

理解该问题的本质需要了解视觉语言模型中空间位置处理的几个关键技术点:

  1. 位置编码机制:现代VL模型通常使用旋转位置编码(RoPE)来处理空间位置信息,其多维扩展(M-RoPE)对grounding任务尤为关键。

  2. 特征图分辨率:28倍数的尺寸要求源于视觉Transformer中patch划分的最优实践,确保特征图能完整覆盖输入图像。

  3. 坐标系统设计:绝对坐标系统虽然增加了实现复杂度,但能更精确地保持空间关系,特别是在多尺度处理场景下。

总结

Qwen2.5-VL模型在grounding任务中表现出的bbox偏移问题,通过规范数据预处理流程和升级底层技术栈得到了有效解决。这一案例揭示了视觉语言模型中空间位置处理的关键技术细节,为相关领域的研究者和工程师提供了有价值的实践经验。未来工作中,持续关注模型底层实现与上层应用的协同优化,将是提升多模态模型性能的重要方向。

登录后查看全文
热门项目推荐
相关项目推荐

项目优选

收起
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
139
1.91 K
kernelkernel
deepin linux kernel
C
22
6
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
192
273
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
923
551
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
421
392
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
74
64
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8