Noir语言1.0.0-beta.6版本发布:编译器优化与类型系统增强
Noir是一种专注于零知识证明领域的领域特定语言(DSL),旨在为开发者提供高效、安全的零知识证明开发体验。作为Aztec网络的核心技术之一,Noir通过简化电路编写过程,让开发者能够更专注于业务逻辑而非底层密码学实现。
核心特性改进
本次发布的1.0.0-beta.6版本在编译器优化和类型系统方面带来了多项重要改进。
测试框架增强
新版本引入了#[test(only_fail_with = "...")]属性,允许开发者精确指定测试用例预期失败的错误信息。这一特性极大提升了测试的精确性,特别是在处理复杂错误场景时,开发者可以确保测试失败确实是因为预期的原因而非其他意外错误。
位运算优化
编译器对位移操作(bit shift)的代码生成进行了显著优化。通过改进底层电路表示,现在位移操作的执行效率更高,生成的约束更少。这对于大量使用位操作的低级算法(如哈希函数、加密算法)将带来明显的性能提升。
类型系统改进
-
原始类型关键字调整:原始类型(如i32, u8等)不再作为语言关键字处理,这一变化使得语言设计更加一致,减少了特殊情况的处理。
-
关联常量访问:现在支持通过
Self::...语法访问关联常量,这提高了代码的组织性和可读性,特别是在实现复杂类型系统时。 -
泛型限制强化:入口点函数(entry points)现在明确禁止使用泛型,这一限制确保了程序的明确性和可预测性,避免了潜在的类型推导问题。
重要问题修复
输入验证强化
编译器现在会明确禁止零长度数组和字符串作为程序输入。这一改变源于底层证明系统对非零长度输入的要求,避免了在电路生成阶段可能出现的边界条件问题。
类型系统修复
-
符号扩展修复:修复了有符号类型转换中的符号扩展问题,确保在类型转换时正确保持数值的符号语义。
-
可见性检查:修正了参数可见性在单态化AST中的位置问题,确保了访问控制逻辑的正确性。
-
类型路径警告:当在类型路径中使用泛型类型但缺少双冒号时,编译器现在会产生警告,帮助开发者遵循最佳实践。
编译器优化
-
内联优化改进:使用集中式的调用图(CallGraph)结构来计算内联信息,提高了内联决策的准确性和效率。
-
递归函数标记:SSA阶段现在能正确标记相互递归的简单函数,为后续优化阶段提供更准确的信息。
-
位操作转换:在移除位移操作的优化过程中,现在能正确传递Field类型给ToBits内部函数,避免了潜在的类型不匹配问题。
标准库调整
-
移除冗余函数:
to_be_radix和to_le_radix函数已从标准库接口中移除,简化了API表面。 -
访问控制修正:修正了
std::meta模块中方法的可见性,确保了模块的封装性。 -
Field类型清理:移除了Field实现中未使用的私有内置函数,减少了API的混乱。
开发者体验改进
-
模式匹配增强:支持括号化的模式匹配,并修正了单元素元组的打印表示,使调试输出更加清晰。
-
格式化字符串修复:修复了lambda表达式中使用格式化字符串时变量捕获的问题,确保了字符串格式化的正确性。
-
主函数类型检查:改进了对可作为主函数类型的过滤逻辑,避免了潜在的类型系统漏洞。
Noir 1.0.0-beta.6版本通过这些改进和修复,进一步提升了语言的稳定性、性能和开发者体验。对于正在构建零知识证明应用的开发者来说,升级到这个版本将获得更可靠的编译过程和更高效的电路生成。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00