PHPUnit 12.0.9版本中Mock对象构建器的变更解析
在PHPUnit 12.0.9版本中,框架对Mock对象的内部实现进行了重要调整,移除了PHPUnit\Framework\MockObject\Builder\InvocationMocker这个类。这一变更虽然属于内部实现细节的调整,但由于历史原因,这个类在早期版本中被部分开发者直接引用,导致升级后可能遇到静态分析工具报错的情况。
变更背景
PHPUnit作为PHP生态中最流行的单元测试框架,其Mock功能一直是核心特性之一。在12.0.9版本之前,框架内部使用InvocationMocker类来处理Mock对象的方法调用预期设置。这个类本应作为内部实现细节,不应该被外部代码直接依赖,但在实际使用中,部分开发者可能会通过IDE自动补全或查看源码的方式直接引用到这个类。
技术影响
虽然移除了InvocationMocker类,但PHPUnit团队确保了这一变更不会破坏现有的测试代码。开发者仍然可以继续使用原有的链式调用方式来设置Mock预期:
$mockedService
->expects($this->exactly(1))
->method('get')
->with(24)
->willReturn('24');
这段代码在运行时完全正常,只是在使用静态分析工具(如PHPStan)并启用了phpstan-phpunit扩展时,可能会报告"Call to method method() on an unknown class"的错误。
解决方案
对于遇到此问题的开发者,有以下几种处理方式:
-
等待扩展更新:phpstan-phpunit扩展需要更新以适应PHPUnit的这一变更。开发者可以关注相关扩展的更新情况。
-
临时解决方案:在等待扩展更新的同时,可以通过在phpstan.neon配置文件中排除相关错误来临时解决问题:
parameters:
ignoreErrors:
- '#Call to method method\(\) on an unknown class#'
- 代码重构:虽然不必要,但开发者也可以考虑重构测试代码,使用更现代的Mock创建方式,如:
$mockedService = $this->createMock(MyService::class);
$mockedService->method('get')
->with(24)
->willReturn('24');
最佳实践建议
这一变更提醒我们几个重要的开发实践:
-
避免依赖内部实现:测试代码应该只依赖框架公开的API,而不是内部实现类。
-
关注框架更新日志:在升级框架版本时,仔细阅读变更日志,了解可能的破坏性变更。
-
合理使用静态分析:静态分析是强大的工具,但要理解其局限性,特别是当分析规则尚未适配最新框架版本时。
PHPUnit团队表示这一变更本应在12.0.0大版本中就实施,但由于疏忽而延迟到了12.0.9版本。这也说明了即使是成熟的开源项目,在版本管理和变更控制上也存在挑战。对于开发者而言,理解框架的内部实现变化有助于编写更健壮的测试代码。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00