ManticoreSearch中Buddy请求的元信息展示优化
背景介绍
在分布式搜索系统ManticoreSearch中,Buddy节点作为辅助节点承担着部分查询处理任务。然而,当用户执行查询后尝试通过"SHOW META"命令查看查询元信息时,如果该查询是由Buddy节点处理的,系统无法正确返回元数据信息。这一问题影响了用户体验和系统监控能力。
问题分析
在原有架构中,当主节点(daemon)将查询转发给Buddy节点处理时,Buddy节点虽然能够执行查询并返回结果,但缺乏将查询元信息(如执行时间、匹配文档数等)回传给主节点的机制。这导致主节点无法收集完整的查询统计信息,进而影响"SHOW META"命令的输出准确性。
解决方案
开发团队通过以下方式解决了这一问题:
-
协议扩展:修改了主节点与Buddy节点间的通信协议,在响应中增加了专门的元信息字段。当Buddy节点检测到特定用户代理时,会在查询响应中包含完整的元信息数据。
-
元信息聚合:主节点接收到Buddy节点的响应后,会提取其中的元信息并存储在会话(session)上下文中。这使得后续的"SHOW META"命令能够访问这些数据。
-
兼容性处理:确保新增功能不影响现有查询流程,同时保持与旧版本Buddy节点的向后兼容性。
实现细节
技术实现上主要涉及以下几个关键点:
- 在Buddy节点的查询响应中新增"meta"字段,格式为JSON数组
- 主节点解析响应时,将Buddy返回的元信息合并到本地会话的元数据结构中
- 优化查询日志记录功能,确保Buddy处理的查询也能正确记录执行时间等指标
效果验证
改进后,无论查询是由主节点直接处理还是由Buddy节点代理执行,"SHOW META"命令都能返回完整的元信息。例如:
+----------------+-------+
| Variable_name | Value |
+----------------+-------+
| total | 1 |
| total_found | 1 |
| total_relation | eq |
| time | 0.006 |
+----------------+-------+
同时,查询日志中也能够准确记录Buddy处理查询的执行时间等信息,为系统监控和性能分析提供了更全面的数据支持。
总结
这一改进显著提升了ManticoreSearch在分布式环境下的可观测性,使管理员和开发者能够更全面地了解查询执行情况,特别是在使用模糊搜索等需要Buddy节点参与处理的场景下。通过协议扩展和元信息聚合,系统现在能够提供一致的监控体验,无论查询由哪个节点实际执行。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00