Dasharo/coreboot项目文档编写指南:从入门到实践
2025-06-24 04:59:50作者:胡唯隽
前言
在开源固件开发领域,Dasharo/coreboot作为重要的开源固件项目,其文档质量直接影响开发者的使用体验。本文将从技术角度详细介绍如何为Dasharo/coreboot项目编写高质量的文档。
文档工具链准备
Dasharo/coreboot采用Sphinx文档工具链,主要支持Markdown格式(兼容嵌入式reStructuredText)。以下是两种搭建文档环境的方案:
方案一:使用Docker容器(推荐)
- 构建文档专用镜像:
make -C util/docker/ doc.coreboot.org
- 创建输出目录并设置权限:
mkdir -p Documentation/_build
- 构建文档:
make -C util/docker docker-build-docs
- 实时预览(自动刷新):
make -C util/docker docker-livehtml-docs
访问本地8000端口即可查看实时渲染效果。
方案二:本地安装Sphinx
- 推荐使用Python虚拟环境安装:
pip install sphinx recommonmark sphinx_rtd_theme
- 验证版本组合:
- Sphinx 2.3.1
- recommonmark 0.6.0
- sphinx_rtd_theme 0.4.3
- 构建文档:
cd Documentation
make sphinx
生成结果位于Documentation/_build目录。
文档编写规范
基础规范
-
格式要求:
- 使用Markdown格式(支持嵌入式reST)
- 文件名全小写
- 每行文本建议72字符宽度
-
内容组织:
- 文档必须放在Documentation/目录下
- 尽量保持与src/目录相同的结构
- 避免内容重复,通过引用方式复用
-
技术细节:
- 不包含具体实现细节(代码即文档)
- 图片宽度不超过700px
- 同一图片不在多个文件中重复使用
文档引用机制
-
TOC树(目录树): 每个文档必须被至少一个toctree引用,支持两种格式:
* [章节1](chapter1.md) * [章节2](chapter2.md)或
1. [章节1](chapter1.md) 2. [章节2](chapter2.md) -
表格处理: Markdown原生表格不被支持,需使用reST语法:
```{eval-rst} +-----------+-----------+ | 表头1 | 表头2 | +===========+===========+ | 内容单元格| 跨列单元格| +-----------+-----------+ ``` -
CSV数据表: 支持直接导入CSV文件生成表格:
```{eval-rst} .. csv-table:: :header: "键", "值" :file: 数据文件.csv ```
高级技巧
-
实时构建: 安装sphinx-autobuild工具可实现保存自动重建文档。
-
多级目录: 复杂项目建议采用分层目录结构,每个子目录包含自己的toctree。
-
术语统一: 保持专业术语的一致性,建议建立项目术语表。
-
代码示例: 嵌入式代码块需注明具体硬件平台和coreboot版本。
常见问题解决
-
文档未包含警告: 出现"document isn't included in any toctree"警告时,检查文档是否被正确引用。
-
格式混乱: 确保Markdown和reST语法不混用(除特例外)。
-
图片显示异常: 检查图片路径是否为相对路径,且位于文档目录附近。
结语
良好的文档是开源项目成功的关键因素。通过遵循Dasharo/coreboot的文档规范,开发者可以创建结构清晰、内容准确的文档,显著降低项目的使用门槛。记住:不完美的文档胜过没有文档,但我们应该始终追求编写"非常非常好"的文档。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0123
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
491
3.62 K
Ascend Extension for PyTorch
Python
300
332
暂无简介
Dart
740
178
React Native鸿蒙化仓库
JavaScript
297
346
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
866
473
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
289
123
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
20
仓颉编程语言测试用例。
Cangjie
43
870