Marten v7 中自定义聚合投影的 AggregateStreamAsync 问题解析
问题背景
Marten 是一个基于 PostgreSQL 的 .NET 事件溯源和文档数据库库。在从 Marten v6 升级到 v7 的过程中,开发者发现使用 AggregateStreamAsync 方法查询自定义聚合投影时出现了问题。
问题现象
当开发者按照官方文档实现自定义聚合投影时,使用以下代码查询聚合结果:
var x = await session.Events.AggregateStreamAsync<StartAndStopAggregate>(id, token: CancellationToken.None);
返回结果 x 始终为 null,尽管调试时可以看到自定义投影的重放过程执行正确。
技术分析
这个问题涉及到 Marten 的事件溯源机制和聚合投影的工作方式:
-
自定义聚合投影:在 Marten 中,开发者可以创建自定义聚合类来处理事件流并构建当前状态。这些类通常实现
IAggregate接口或遵循特定约定。 -
AggregateStreamAsync:这个方法设计用于从事件流中重建聚合状态,它通过重放所有相关事件来构建聚合实例。
-
版本兼容性问题:在 v6 到 v7 的升级过程中,内部的事件处理机制可能发生了变化,导致这个方法在某些情况下无法正确返回聚合实例。
解决方案
根据项目维护者的建议,目前有以下两种可行的解决方案:
-
直接查询聚合文档:
var aggregate = await session.LoadAsync<StartAndStopAggregate>(id); -
使用 FetchForWriting:
var aggregate = await session.Events.FetchForWriting<StartAndStopAggregate>(id);
这两种方法在 v7 版本中都能正确返回聚合实例。
最佳实践建议
-
版本升级注意事项:在升级 Marten 主要版本时,应仔细测试所有与事件溯源相关的功能,特别是聚合查询部分。
-
文档参考:虽然官方文档提供了示例,但在实际应用中遇到问题时,应优先考虑使用已知稳定的替代方案。
-
调试技巧:当聚合查询返回 null 时,可以检查:
- 事件流是否存在
- 事件处理逻辑是否正确
- 聚合类是否符合 Marten 的约定
结论
Marten v7 中 AggregateStreamAsync 方法对于自定义聚合投影的查询存在问题,开发者可以采用直接加载聚合文档或使用 FetchForWriting 方法作为替代方案。这个问题预计会在后续版本中得到修复,但在修复前,建议开发者使用上述替代方案确保应用正常运行。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
yuanrongopenYuanrong runtime:openYuanrong 多语言运行时提供函数分布式编程,支持 Python、Java、C++ 语言,实现类单机编程高性能分布式运行。Go051
pc-uishopTNT开源商城系统使用java语言开发,基于SpringBoot架构体系构建的一套b2b2c商城,商城是满足集平台自营和多商户入驻于一体的多商户运营服务系统。包含PC 端、手机端(H5\APP\小程序),系统架构以及实现案例中应满足和未来可能出现的业务系统进行对接。Vue00
ebook-to-mindmapepub、pdf 拆书 AI 总结TSX01