Marten v7 中自定义聚合投影的 AggregateStreamAsync 问题解析
问题背景
Marten 是一个基于 PostgreSQL 的 .NET 事件溯源和文档数据库库。在从 Marten v6 升级到 v7 的过程中,开发者发现使用 AggregateStreamAsync 方法查询自定义聚合投影时出现了问题。
问题现象
当开发者按照官方文档实现自定义聚合投影时,使用以下代码查询聚合结果:
var x = await session.Events.AggregateStreamAsync<StartAndStopAggregate>(id, token: CancellationToken.None);
返回结果 x 始终为 null,尽管调试时可以看到自定义投影的重放过程执行正确。
技术分析
这个问题涉及到 Marten 的事件溯源机制和聚合投影的工作方式:
-
自定义聚合投影:在 Marten 中,开发者可以创建自定义聚合类来处理事件流并构建当前状态。这些类通常实现
IAggregate接口或遵循特定约定。 -
AggregateStreamAsync:这个方法设计用于从事件流中重建聚合状态,它通过重放所有相关事件来构建聚合实例。
-
版本兼容性问题:在 v6 到 v7 的升级过程中,内部的事件处理机制可能发生了变化,导致这个方法在某些情况下无法正确返回聚合实例。
解决方案
根据项目维护者的建议,目前有以下两种可行的解决方案:
-
直接查询聚合文档:
var aggregate = await session.LoadAsync<StartAndStopAggregate>(id); -
使用 FetchForWriting:
var aggregate = await session.Events.FetchForWriting<StartAndStopAggregate>(id);
这两种方法在 v7 版本中都能正确返回聚合实例。
最佳实践建议
-
版本升级注意事项:在升级 Marten 主要版本时,应仔细测试所有与事件溯源相关的功能,特别是聚合查询部分。
-
文档参考:虽然官方文档提供了示例,但在实际应用中遇到问题时,应优先考虑使用已知稳定的替代方案。
-
调试技巧:当聚合查询返回 null 时,可以检查:
- 事件流是否存在
- 事件处理逻辑是否正确
- 聚合类是否符合 Marten 的约定
结论
Marten v7 中 AggregateStreamAsync 方法对于自定义聚合投影的查询存在问题,开发者可以采用直接加载聚合文档或使用 FetchForWriting 方法作为替代方案。这个问题预计会在后续版本中得到修复,但在修复前,建议开发者使用上述替代方案确保应用正常运行。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00