Kornia项目测试覆盖率优化:并行化CI加速实践
2025-05-22 02:33:14作者:伍希望
背景与问题分析
在计算机视觉库Kornia的开发过程中,测试覆盖率是保证代码质量的重要指标。当前项目的CI流程中,测试覆盖率检查任务耗时高达25-30分钟,严重影响了PR的审查效率。通过分析发现,该任务主要包含四种测试场景:fp64精度(含/不含慢测试)、fp32精度(含/不含慢测试),这些测试目前是串行执行的。
优化方案设计
基于覆盖率工具的特性,我们设计了一个并行化执行方案:
-
任务拆分:将原有单任务拆分为四个并行子任务
- fp64基础测试(不含慢测试)
- fp64慢测试专项
- fp32基础测试(不含慢测试)
- fp32慢测试专项
-
覆盖率合并:利用coverage工具的combine功能,将各子任务生成的.coverage文件合并为完整报告
-
结果上报:统一提交合并后的覆盖率报告
技术实现细节
覆盖率工具的高级用法
coverage.py提供了完善的子覆盖率合并功能。其核心原理是:
- 每个测试进程生成独立的.coverage数据文件
- combine命令会合并这些文件中的执行轨迹数据
- 最终生成统一的覆盖率统计报告
CI配置优化
在GitHub Actions中,可以通过以下方式实现:
- 使用matrix策略并行运行不同测试组合
- 通过artifacts机制共享.coverage文件
- 在汇总阶段使用coverage combine合并结果
测试用例分类策略
为确保拆分后的测试完整性,需要:
- 明确标记慢测试用例(如使用@pytest.mark.slow)
- 为不同精度测试添加相应标记
- 在pytest配置中实现按标记过滤
预期收益
该优化方案预计带来:
- CI时间从30分钟缩短至5-8分钟(取决于最慢的子任务)
- 更细粒度的测试失败定位
- 可扩展的测试矩阵(未来可轻松添加其他测试维度)
实施建议
- 先在小范围分支验证方案可行性
- 监控各子任务的负载均衡情况
- 考虑添加缓存机制进一步优化
- 完善测试分类文档,确保开发者正确标记新测试
总结
通过合理利用覆盖率工具的特性和CI的并行能力,可以显著提升Kornia项目的开发效率。这种方案不仅适用于当前项目,也可为其他Python项目的CI优化提供参考。关键在于测试用例的科学分类和覆盖率工具的灵活运用,在保证测试完备性的同时获得最佳的CI效率。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
222
238
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
671
156
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
312
React Native鸿蒙化仓库
JavaScript
261
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
859
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
217