Kornia项目测试覆盖率优化:并行化CI加速实践
2025-05-22 02:33:14作者:伍希望
背景与问题分析
在计算机视觉库Kornia的开发过程中,测试覆盖率是保证代码质量的重要指标。当前项目的CI流程中,测试覆盖率检查任务耗时高达25-30分钟,严重影响了PR的审查效率。通过分析发现,该任务主要包含四种测试场景:fp64精度(含/不含慢测试)、fp32精度(含/不含慢测试),这些测试目前是串行执行的。
优化方案设计
基于覆盖率工具的特性,我们设计了一个并行化执行方案:
-
任务拆分:将原有单任务拆分为四个并行子任务
- fp64基础测试(不含慢测试)
- fp64慢测试专项
- fp32基础测试(不含慢测试)
- fp32慢测试专项
-
覆盖率合并:利用coverage工具的combine功能,将各子任务生成的.coverage文件合并为完整报告
-
结果上报:统一提交合并后的覆盖率报告
技术实现细节
覆盖率工具的高级用法
coverage.py提供了完善的子覆盖率合并功能。其核心原理是:
- 每个测试进程生成独立的.coverage数据文件
- combine命令会合并这些文件中的执行轨迹数据
- 最终生成统一的覆盖率统计报告
CI配置优化
在GitHub Actions中,可以通过以下方式实现:
- 使用matrix策略并行运行不同测试组合
- 通过artifacts机制共享.coverage文件
- 在汇总阶段使用coverage combine合并结果
测试用例分类策略
为确保拆分后的测试完整性,需要:
- 明确标记慢测试用例(如使用@pytest.mark.slow)
- 为不同精度测试添加相应标记
- 在pytest配置中实现按标记过滤
预期收益
该优化方案预计带来:
- CI时间从30分钟缩短至5-8分钟(取决于最慢的子任务)
- 更细粒度的测试失败定位
- 可扩展的测试矩阵(未来可轻松添加其他测试维度)
实施建议
- 先在小范围分支验证方案可行性
- 监控各子任务的负载均衡情况
- 考虑添加缓存机制进一步优化
- 完善测试分类文档,确保开发者正确标记新测试
总结
通过合理利用覆盖率工具的特性和CI的并行能力,可以显著提升Kornia项目的开发效率。这种方案不仅适用于当前项目,也可为其他Python项目的CI优化提供参考。关键在于测试用例的科学分类和覆盖率工具的灵活运用,在保证测试完备性的同时获得最佳的CI效率。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C089
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python057
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0137
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
473
3.51 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
220
88
暂无简介
Dart
721
174
Ascend Extension for PyTorch
Python
281
315
React Native鸿蒙化仓库
JavaScript
286
335
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
848
436
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
698
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19