Cornerstone.js 开源项目教程
项目介绍
Cornerstone.js 是一个用于在网页上显示医学图像的开源 JavaScript 库。它提供了强大的图像处理功能,支持多种医学图像格式,如 DICOM,并且可以与各种前端框架(如 React、Vue 等)无缝集成。Cornerstone.js 的核心目标是提供一个高性能、易于使用的图像渲染引擎,使得开发者可以轻松地在网页上展示和操作医学图像。
项目快速启动
安装
首先,你需要在你的项目中安装 Cornerstone.js。你可以使用 npm 或 yarn 来安装:
npm install cornerstone-core
或者
yarn add cornerstone-core
基本使用
以下是一个简单的示例,展示如何在网页上显示一张 DICOM 图像:
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>Cornerstone.js 示例</title>
<script src="https://unpkg.com/cornerstone-core"></script>
</head>
<body>
<div id="image-canvas" style="width: 512px; height: 512px; background-color: black;"></div>
<script>
// 初始化 Cornerstone
cornerstone.enable(document.getElementById('image-canvas'));
// 加载并显示图像
cornerstone.loadImage('path/to/your/dicom/image.dcm').then(function(image) {
cornerstone.displayImage(document.getElementById('image-canvas'), image);
});
</script>
</body>
</html>
关键代码解释
-
初始化 Cornerstone:
cornerstone.enable(document.getElementById('image-canvas'));这行代码将指定的 DOM 元素(
image-canvas)初始化为 Cornerstone 的渲染区域。 -
加载并显示图像:
cornerstone.loadImage('path/to/your/dicom/image.dcm').then(function(image) { cornerstone.displayImage(document.getElementById('image-canvas'), image); });这行代码加载指定的 DICOM 图像,并在初始化的 DOM 元素中显示图像。
应用案例和最佳实践
应用案例
Cornerstone.js 广泛应用于医学影像系统(PACS)、远程诊断、医学教育等领域。例如,医院可以使用 Cornerstone.js 构建一个在线影像查看系统,医生可以通过浏览器远程查看患者的 CT、MRI 等影像资料。
最佳实践
-
性能优化: 对于大尺寸的医学图像,建议使用 Web Workers 进行图像处理,以避免阻塞主线程,提高渲染性能。
-
图像交互: 结合 Cornerstone.js 的工具库(如
cornerstoneTools),可以实现图像的缩放、平移、窗宽窗位调整等交互功能。 -
多图像同步: 在多图像查看场景中,可以使用 Cornerstone.js 的事件系统,实现多个图像的同步显示和操作。
典型生态项目
-
CornerstoneTools: 这是一个与 Cornerstone.js 配套的工具库,提供了丰富的图像交互工具,如测量、标注、窗宽窗位调整等。
-
CornerstoneWADOImageLoader: 用于加载 DICOM 图像的加载器,支持从 WADO 服务器加载图像。
-
OHIF Viewer: 一个基于 Cornerstone.js 构建的开源医学影像查看器,提供了完整的 PACS 系统解决方案。
通过这些生态项目,开发者可以快速构建功能强大的医学影像应用。
通过本教程,你应该已经掌握了 Cornerstone.js 的基本使用方法,并了解了其在实际应用中的最佳实践和相关生态项目。希望这些内容能帮助你更好地使用和开发基于 Cornerstone.js 的应用。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00