Cornerstone.js 开源项目教程
项目介绍
Cornerstone.js 是一个用于在网页上显示医学图像的开源 JavaScript 库。它提供了强大的图像处理功能,支持多种医学图像格式,如 DICOM,并且可以与各种前端框架(如 React、Vue 等)无缝集成。Cornerstone.js 的核心目标是提供一个高性能、易于使用的图像渲染引擎,使得开发者可以轻松地在网页上展示和操作医学图像。
项目快速启动
安装
首先,你需要在你的项目中安装 Cornerstone.js。你可以使用 npm 或 yarn 来安装:
npm install cornerstone-core
或者
yarn add cornerstone-core
基本使用
以下是一个简单的示例,展示如何在网页上显示一张 DICOM 图像:
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>Cornerstone.js 示例</title>
<script src="https://unpkg.com/cornerstone-core"></script>
</head>
<body>
<div id="image-canvas" style="width: 512px; height: 512px; background-color: black;"></div>
<script>
// 初始化 Cornerstone
cornerstone.enable(document.getElementById('image-canvas'));
// 加载并显示图像
cornerstone.loadImage('path/to/your/dicom/image.dcm').then(function(image) {
cornerstone.displayImage(document.getElementById('image-canvas'), image);
});
</script>
</body>
</html>
关键代码解释
-
初始化 Cornerstone:
cornerstone.enable(document.getElementById('image-canvas'));
这行代码将指定的 DOM 元素(
image-canvas
)初始化为 Cornerstone 的渲染区域。 -
加载并显示图像:
cornerstone.loadImage('path/to/your/dicom/image.dcm').then(function(image) { cornerstone.displayImage(document.getElementById('image-canvas'), image); });
这行代码加载指定的 DICOM 图像,并在初始化的 DOM 元素中显示图像。
应用案例和最佳实践
应用案例
Cornerstone.js 广泛应用于医学影像系统(PACS)、远程诊断、医学教育等领域。例如,医院可以使用 Cornerstone.js 构建一个在线影像查看系统,医生可以通过浏览器远程查看患者的 CT、MRI 等影像资料。
最佳实践
-
性能优化: 对于大尺寸的医学图像,建议使用 Web Workers 进行图像处理,以避免阻塞主线程,提高渲染性能。
-
图像交互: 结合 Cornerstone.js 的工具库(如
cornerstoneTools
),可以实现图像的缩放、平移、窗宽窗位调整等交互功能。 -
多图像同步: 在多图像查看场景中,可以使用 Cornerstone.js 的事件系统,实现多个图像的同步显示和操作。
典型生态项目
-
CornerstoneTools: 这是一个与 Cornerstone.js 配套的工具库,提供了丰富的图像交互工具,如测量、标注、窗宽窗位调整等。
-
CornerstoneWADOImageLoader: 用于加载 DICOM 图像的加载器,支持从 WADO 服务器加载图像。
-
OHIF Viewer: 一个基于 Cornerstone.js 构建的开源医学影像查看器,提供了完整的 PACS 系统解决方案。
通过这些生态项目,开发者可以快速构建功能强大的医学影像应用。
通过本教程,你应该已经掌握了 Cornerstone.js 的基本使用方法,并了解了其在实际应用中的最佳实践和相关生态项目。希望这些内容能帮助你更好地使用和开发基于 Cornerstone.js 的应用。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~087CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava05GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









