Rancher Local Path Provisioner动态存储配置实践:基于节点亲和性的PVC挂载
背景与问题场景
在使用Kubernetes集群时,动态存储供应是常见的需求。Rancher提供的local-path-provisioner作为轻量级本地存储方案,特别适合边缘计算或开发测试环境。但在实际使用中,当我们需要结合节点亲和性(Node Affinity)实现动态存储供应时,可能会遇到存储卷无法自动创建的典型问题。
核心问题分析
从问题描述中可以看到,用户尝试在k3s集群中实现以下目标:
- 通过节点标签(local-storage=enabled)选择特定节点
- 将节点的/tmp/blah目录通过动态供应的方式挂载到Pod中
- 使用StorageClass和PVC实现这一过程
但出现了Pod和PVC互相等待的"死锁"状态:
- Pod状态为Pending,等待PVC绑定
- PVC状态为Pending,等待PV创建
关键配置解析
1. StorageClass配置要点
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
name: local-storage-class
provisioner: rancher.io/local-path
parameters:
fsType: ext4
reclaimPolicy: Retain
volumeBindingMode: WaitForFirstConsumer
这里有几个关键参数值得注意:
volumeBindingMode: WaitForFirstConsumer:这是实现节点亲和性的关键,它延迟了存储绑定直到Pod被调度reclaimPolicy: Retain:确保PV删除后数据保留,适合生产环境
2. ConfigMap配置
local-path-provisioner通过ConfigMap定义节点路径映射:
data:
config.json: |-
{
"nodePathMap":[
{
"node":"dell5000",
"paths":["/tmp/blah"]
}
]
}
这里明确定义了特定节点(dell5000)上可用的存储路径。
3. PVC配置优化
原始配置中使用了ReadWriteOnce访问模式,但更精确的解决方案是使用ReadWriteOncePod:
accessModes:
- ReadWriteOncePod
这是Kubernetes 1.22+引入的新模式,确保卷只能被单个Pod独占访问,更符合本地存储的使用场景。
解决方案实现
1. 节点准备
首先确保目标节点有正确的标签:
kubectl label nodes dell5000 local-storage=enabled
2. 存储资源配置
创建包含以下关键元素的存储资源配置:
- 正确的StorageClass定义
- 精确的ConfigMap路径映射
- 使用ReadWriteOncePod的PVC
3. 工作负载配置
在Deployment中需要明确指定节点亲和性:
affinity:
nodeAffinity:
requiredDuringSchedulingIgnoredDuringExecution:
nodeSelectorTerms:
- matchExpressions:
- key: local-storage
operator: In
values:
- enabled
经验总结
-
访问模式选择:对于本地存储,
ReadWriteOncePod比传统的ReadWriteOnce更精确,能避免潜在的访问冲突。 -
绑定时机控制:
WaitForFirstConsumer模式对于有节点亲和性要求的存储供应至关重要,它确保调度器先选择节点再创建存储。 -
路径权限管理:确保ConfigMap中指定的主机路径存在且有适当权限,否则provisioner可能无法创建卷。
-
调试技巧:当PVC处于Pending状态时,可通过
kubectl describe pvc查看事件日志,通常会显示具体等待原因。
进阶建议
对于生产环境,还应考虑:
- 设置资源限制,防止单个Pod占用过多本地存储
- 实现存储监控,跟踪本地存储使用情况
- 考虑使用Local PersistentVolume替代方案,对于固定需求的场景可能更合适
通过以上配置和优化,可以可靠地在Rancher local-path-provisioner中实现基于节点亲和性的动态存储供应,满足特定业务场景的需求。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00