Super-Gradients项目中YOLO NAS QAT训练的技术要点解析
2025-06-11 10:03:05作者:史锋燃Gardner
前言
在目标检测领域,YOLO系列模型一直以其高效的检测性能著称。Super-Gradients作为一个强大的训练库,为YOLO NAS模型提供了完整的训练流程支持。本文将重点分析在使用Super-Gradients进行YOLO NAS量化感知训练(QAT)时需要注意的技术要点。
版本兼容性问题
在Super-Gradients 3.6.0版本中,开发者对部分功能进行了重构和优化。其中,DetectionCollateFN和CrowdDetectionCollateFN这两个数据预处理类已被标记为废弃,并在3.6.0版本中完全移除。
对于需要使用这些功能的用户,有以下几种解决方案:
- 降级使用3.2.0版本:这是最直接的解决方案,该版本保留了完整的旧接口
- 使用新的替代类:3.3.0版本引入了
_DetectionCollateFN和_CrowdDetectionCollateFN作为替代 - 更新训练脚本:按照最新版本的API规范重写相关代码
训练流程优化建议
在进行YOLO NAS量化感知训练时,以下几点需要特别注意:
- 数据预处理配置:确保数据增强管道与量化训练兼容
- 学习率调度:QAT通常需要更保守的学习率策略
- 模型量化配置:合理设置量化位宽和量化策略
- 校准集准备:为量化过程准备代表性的校准数据
实际应用中的最佳实践
- 版本控制:建议使用虚拟环境固定训练库版本,避免意外升级导致的兼容性问题
- 渐进式量化:可以先进行全精度训练,再逐步引入量化操作
- 性能监控:密切关注量化前后模型的精度和速度变化
- 硬件适配:考虑目标部署硬件的特性调整量化策略
结语
YOLO NAS结合量化感知训练可以显著提升模型在边缘设备上的推理效率。通过理解Super-Gradients库的版本演进和API变化,开发者可以更顺利地完成模型训练和部署的全流程。建议用户关注官方文档更新,及时调整训练策略以适应最新的最佳实践。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0134
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00
最新内容推荐
【免费下载】 提升下载效率:BaiduExporter-Motrix 扩展程序推荐【亲测免费】 GRABIT:从图像文件中提取数据点的Matlab源码【亲测免费】 电力电表376.1协议Java版【亲测免费】 一键获取网站完整源码:打造您的专属网站副本 探索三维世界:Three.js加载GLTF文件示例项目推荐【亲测免费】 解决 fatal error C1083: 无法打开包括文件 "stdint.h": No such file or directory【免费下载】 华为网络搬迁工具 NMT 资源下载【免费下载】 LabVIEW 2018 资源下载指南 JDK 8 Update 341:稳定高效的Java开发环境【免费下载】 TSMC 0.18um PDK 资源文件下载
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
499
3.65 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
870
485
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
314
134
React Native鸿蒙化仓库
JavaScript
297
347
暂无简介
Dart
747
180
Ascend Extension for PyTorch
Python
302
344
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
66
20
仓颉编译器源码及 cjdb 调试工具。
C++
150
882