Mongoose 事务重试中的数组操作问题解析
2025-05-06 00:17:05作者:沈韬淼Beryl
问题背景
在使用 Mongoose 8.6.0 版本与 MongoDB 5 配合时,开发者在事务处理中发现了一个关于数组操作的严重问题。当文档中的子文档数组通过 push()
或 addToSet()
方法修改后,在事务重试过程中会出现数据重复的问题。
问题现象
具体表现为:
- 文档包含一个子文档数组
- 使用
push()
方法向数组添加元素 - 在事务中保存(
save()
)文档 - 事务需要重试时(整个事务重试而非仅提交重试)
结果会导致数组中添加的元素数量呈指数级增长,遵循 2^n 规律(n为重试次数)。例如:
- 第一次重试:2个相同元素
- 第二次重试:4个相同元素
- 第三次重试:8个相同元素
- 以此类推
技术分析
通过分析 MongoDB 的更新操作日志,可以清楚地看到问题所在:
第一次保存操作生成的更新语句:
{
"$push": {
"items": {
"$each": [{"name":"test3"}]
}
},
"$inc": {"__v":1}
}
第二次重试生成的更新语句:
{
"$set": {"__v":1},
"$push": {
"items": {
"$each": [{"name":"test3"},{"name":"test3"}]
}
}
}
第三次重试生成的更新语句:
{
"$set": {"__v":1},
"$push": {
"items": {
"$each": [{"name":"test3"},{"name":"test3"},{"name":"test3"},{"name":"test3"}]
}
}
}
可以看到,每次重试时 $push.items.$each
数组中的元素数量都会翻倍,这直接导致了数据的重复问题。
影响范围
这个问题主要影响以下数组操作方法:
push()
addToSet()
其他数组操作方法如 pop()
、pull()
、remove()
、set()
、shift()
和 splice()
则表现正常。
潜在风险
除了数据重复外,这个问题还会带来两个潜在风险:
- 更新查询体积膨胀:随着重试次数增加,更新查询的体积会急剧增长
- 操作失败风险:当查询体积超过 MongoDB 的限制(16MB)时,操作会失败并抛出以下错误之一:
RangeError: The value of "offset" is out of range... MongoServerError: BSONObj size: 16928643 is invalid...
临时解决方案
在官方修复前,可以采用以下临时解决方案:
await mongoose.connection.transaction(async (session) => {
// 重置数组字段,清除内部状态
doc.items = doc.items;
await doc.save({ session });
// 重试逻辑...
});
这个方法通过重新赋值数组字段来重置 Mongoose 文档的内部状态,确保每次重试时都能正确生成更新语句。
最佳实践建议
在事务处理中使用数组操作时,建议:
- 尽量减少事务中的数组操作
- 对于关键业务逻辑,考虑使用原子操作而非事务
- 监控事务重试次数,设置合理的重试上限
- 在重试逻辑中加入数据一致性检查
这个问题提醒我们在使用 ORM/ODM 工具的高级功能时,需要充分理解其内部工作机制,特别是在分布式环境下的事务处理场景中。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0370Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++098AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
203
2.18 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
62
94

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
977
575

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
84

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133