首页
/ 探秘RenderDiffusion:3D重建、修复与生成的图像扩散新境界

探秘RenderDiffusion:3D重建、修复与生成的图像扩散新境界

2024-05-23 11:13:03作者:何将鹤

在这个数字化的时代,3D理解与生成已经成为计算机视觉领域的核心挑战之一。然而,尽管现有的图像扩散模型在条件和无条件图像生成方面取得了显著的进步,但它们仍然无法支持3D一致性生成或单视图对象重建任务。现在,我们很高兴向大家介绍RenderDiffusion——一个基于图像扩散的3D生成和推理模型,仅需单眼2D监督就能训练。

项目介绍

RenderDiffusion是一个开创性的技术,它以一种新颖的图像去噪架构为中心,该架构在每个去噪步骤中都会生成并渲染场景的中间三维表示。这一设计引入了强大的归纳结构,使扩散过程具有3D一致性,而只需要2D监督。通过这种方式,我们可以从任何视角渲染所得到的3D表示,使得在无需大型3D模型集合的情况下,也能实现大规模的3D生成成为可能。

技术分析

RenderDiffusion沿用了2D图像扩散模型的成功训练和生成框架,这些模型被训练来对添加了不同噪声的输入图像进行去噪。但在测试时,我们不改变这个设置,而是修改主要去噪器的架构,使其能够将嘈杂的输入图像编码为场景的体素表示,并将其渲染为去噪输出图像。这为图像扩散过程引入了3D场景一致性的诱导偏置,使得我们可以从新颖视角渲染3D表示。

应用场景

RenderDiffusion展现了其在三个关键任务中的卓越性能:单视图3D重建、无条件生成以及3D感知的图像修复。

  • 3D重建:RenderDiffusion可以从2D图像中重建3D场景,甚至可以处理某种程度上的离分布输入图像。
  • 无条件生成:该模型可以生成具有丰富细节和多样性的3D场景图像。
  • 3D感知的图像修复:对于部分被遮蔽或损坏的图像,RenderDiffusion可以通过找到与观察到图像部分一致的潜在3D结构来进行修复。

项目特点

  • 3D一致性:即使在只有2D图像数据的情况下,RenderDiffusion也能生成具有3D一致性的图像。
  • 灵活性:通过控制噪声添加步数,可以在重建精度和对分布外输入图像的泛化之间进行权衡。
  • 创新架构:结合了图像扩散和3D表示,允许直接在像素级别进行建模,从而解锁了诸如图像细化和修复等应用。
  • 易于复现:为了便于学术研究,即将发布代码、数据集和检查点,以确保结果可重复性。

RenderDiffusion的出现标志着3D生成和推理的新里程碑,它不仅展示了图像扩散模型的潜力,也预示着未来在大规模3D生成和理解方面的无限可能性。无论您是研究人员还是开发者,我们都欢迎您探索这个令人期待的项目,共同推动技术的边界。

登录后查看全文
热门项目推荐