NVlabs/FoundationPose项目中的数据集BOP格式转换技术解析
2025-07-05 21:02:09作者:郜逊炳
概述
在计算机视觉领域,特别是3D物体姿态估计任务中,BOP(Benchmark for 6D Object Pose Estimation)格式已成为行业标准格式之一。本文将深入探讨如何将NVlabs/FoundationPose项目中的数据集(特别是Objaverse和GSO数据集)转换为BOP兼容格式的技术细节,重点解决转换过程中遇到的旋转矩阵和位移向量对齐问题。
坐标系转换基础
在3D视觉系统中,通常涉及多个坐标系:
- 世界坐标系(World Coordinate System)
- 相机坐标系(Camera Coordinate System)
- 物体坐标系(Object Coordinate System)
BOP格式要求提供物体相对于相机坐标系的姿态(cam_r_m2c和cam_t_m2c),即物体坐标系到相机坐标系的变换矩阵。
原始数据解析
FoundationPose数据集中的状态文件(state.json)包含以下关键信息:
- transform_matrix_world:物体在世界坐标系中的变换矩阵
- scale:物体的缩放系数
- cameraViewTransform:相机在世界坐标系中的视图变换矩阵
关键技术问题与解决方案
1. 旋转矩阵正交化处理
原始数据中的旋转矩阵可能不满足正交矩阵的性质(行列式为1)。需要通过以下步骤进行归一化:
def normalizeRotation(pose):
new_pose = pose.copy()
scales = np.linalg.norm(pose[:3,:3], axis=0)
new_pose[:3,:3] /= scales.reshape(1,3)
return new_pose
2. 完整的姿态转换流程
正确的转换流程应包含以下步骤:
- 加载相机参数和物体状态
- 计算相机在世界坐标系中的位姿
- 归一化物体的旋转矩阵
- 计算物体在相机坐标系中的位姿
# 加载数据
with open('camera_params.json','r') as f:
camera_params = json.load(f)
with open('states.json','r') as f:
cfg = json.load(f)
# 坐标系转换
world_in_glcam = np.array(camera_params['cameraViewTransform']).reshape(4,4).T
cam_in_world = np.linalg.inv(world_in_glcam) @ glcam_in_cvcam
world_in_cam = np.linalg.inv(cam_in_world)
# 物体位姿处理
ob_in_world = np.array(cfg['objects'][ob_name]['transform_matrix_world']).reshape(4,4).T
ob_in_world = normalizeRotation(ob_in_world)
ob_in_cam = world_in_cam @ ob_in_world
3. 网格模型处理
Objaverse数据集中的.glb模型文件可能需要额外的处理才能与计算得到的位姿正确对齐。常见问题包括:
- 模型缩放不一致
- 坐标系定义差异
- 模型中心点偏移
建议的处理方法包括:
- 检查并统一模型的缩放比例
- 确认模型的坐标系定义与数据集的约定一致
- 必要时对模型进行重新中心化处理
验证与调试技巧
当转换结果出现偏差时,可以采用以下调试方法:
- 可视化验证:使用Blender等工具加载模型和位姿,与原始图像对比
- 分步检查:验证中间转换结果,特别是:
- 旋转矩阵的行列式是否为1
- 坐标系转换链是否正确
- 尺度一致性检查:确保所有变换使用统一的单位制
常见问题解决方案
旋转方向偏差
如报告中提到的180度偏差问题,通常是由于坐标系定义差异造成的。解决方案包括:
- 对旋转矩阵施加额外的修正变换
- 在欧拉角表示中补偿固定角度的偏移
位移向量不匹配
位移向量不匹配可能由以下原因导致:
- 模型本身的尺度与位姿定义的尺度不一致
- 模型中心点定义与位姿参考点不一致
- 坐标系轴向定义差异
解决方案包括:
- 检查并统一尺度因子
- 对模型进行重新中心化处理
- 确认并统一坐标系定义
总结
将FoundationPose数据集转换为BOP格式是一个需要细致处理的过程,关键在于正确理解原始数据的坐标系定义和正确处理各种变换关系。通过本文介绍的方法,研究人员可以有效地解决转换过程中遇到的旋转矩阵和位移向量对齐问题,为后续的6D姿态估计研究提供高质量的数据基础。
对于特定数据集(如GSO)的特殊处理需求,建议参考类似MagePose-GSO项目中的处理方法,根据具体情况进行适当的调整和优化。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++097AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
202
2.17 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
61
94

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
977
575

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
83

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133