Apache Iceberg 在 PySpark 与 Nessie 集成中的数据读取问题分析
2025-06-09 09:31:34作者:蔡丛锟
问题背景
Apache Iceberg 是一种开源的表格式,旨在解决大数据生态系统中的表管理问题。近期在 Iceberg 1.7.1 版本中发现了一个关键问题,当与 PySpark 和 Nessie 集成使用时,会出现数据读取不正确和 JVM 崩溃的情况。
问题现象
在特定环境下,用户发现以下异常行为:
-
数据读取不正确:查询结果与底层 Parquet 文件中的实际数据不符,特别是在某些分区条件下会返回错误的结果集。
-
JVM 崩溃:执行某些查询时会触发 SIGSEGV 错误,导致 Spark 执行器崩溃。崩溃日志显示问题主要发生在 JVM 的并发哈希表操作和内存管理相关代码中。
环境配置
问题出现在以下技术栈组合中:
- 硬件架构:aarch64
- Java 版本:17.0.13+11
- Spark 版本:3.5.4
- Iceberg 版本:1.7.1
- Nessie 版本:0.101.2
- 运行环境:AWS EKS
问题复现步骤
- 创建源表和目标表,均使用 Iceberg 格式并设置特定分区策略
- 执行 INSERT OVERWRITE 操作将数据从源表写入目标表
- 验证数据时发现:
- Parquet 文件中的数据是正确的
- 但通过 Spark SQL 查询返回的结果不正确
- 某些查询会触发 JVM 崩溃
技术分析
从现象来看,问题可能涉及以下几个层面:
-
内存管理问题:JVM 崩溃日志显示问题发生在内存访问和并发哈希表操作中,表明可能存在内存访问越界或并发控制问题。
-
数据序列化/反序列化:由于底层文件数据正确而查询结果错误,问题可能出现在数据从存储层到内存的转换过程中。
-
特定分区条件触发:问题只在特定分区条件下出现,表明可能与分区剪枝或谓词下推优化相关。
-
架构兼容性:问题在 aarch64 架构上出现,可能与平台特定的内存对齐或指令集优化有关。
解决方案
该问题已在 Iceberg 1.8.0 版本中得到修复。对于使用 1.7.1 版本的用户,建议采取以下措施:
- 升级到 Iceberg 1.8.0 或更高版本
- 如果暂时无法升级,可以尝试:
- 调整查询方式,避免触发问题的特定查询模式
- 增加 JVM 内存参数
- 检查并优化分区策略
经验总结
这个案例提醒我们,在大数据组件集成时需要注意:
- 版本兼容性:特别是当使用多个相互依赖的组件时
- 平台差异:不同硬件架构可能表现出不同行为
- 数据验证:不能仅依赖查询结果,需要定期验证底层文件数据
- 错误监控:建立完善的错误监控机制,及时发现类似的内存访问问题
对于大数据开发者来说,理解底层存储格式与查询引擎之间的交互原理至关重要,这有助于快速定位和解决此类复杂问题。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
STM32到GD32项目移植完全指南:从兼容性到实战技巧 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 开源电子设计自动化利器:KiCad EDA全方位使用指南 Python案例资源下载 - 从入门到精通的完整项目代码合集 Python开发者的macOS终极指南:VSCode安装配置全攻略 网页设计期末大作业资源包 - 一站式解决方案助力高效完成项目 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Jetson TX2开发板官方资源完全指南:从入门到精通
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.87 K
暂无简介
Dart
671
155
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
260
322
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
309
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.19 K
653
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1