MTEB项目1.35.2版本发布:训练数据标注优化与任务更新
MTEB(Massive Text Embedding Benchmark)是一个用于评估文本嵌入模型性能的大规模基准测试项目。该项目通过提供多样化的任务和数据集,帮助研究人员和开发者全面评估不同文本嵌入模型在各种自然语言处理场景下的表现。文本嵌入是将文本转换为向量表示的技术,广泛应用于信息检索、语义搜索、文本分类等任务中。
在最新发布的1.35.2版本中,MTEB团队主要针对训练数据标注和任务表进行了重要更新和修复。这些改进进一步提升了基准测试的准确性和可靠性,为文本嵌入模型的评估提供了更完善的基础设施。
训练数据标注优化
本次更新的核心内容是对多个嵌入模型的训练数据标注进行了系统性的修复和完善:
-
Voyage嵌入模型:专门针对其训练数据进行了重新标注,确保只包含实际的训练数据,提高了评估的准确性。
-
Kalm嵌入模型:添加了正确的训练数据标注,解决了之前版本中缺失的问题。同时修复了该模型的最大token限制问题,确保模型评估时的输入长度符合预期。
-
Stella嵌入模型:同样完善了训练数据标注,为后续的性能评估提供了更可靠的基础。
-
GIST嵌入模型:新增了训练数据标注,使该模型的评估更加规范。
此外,团队还移除了几个不存在或不适用的数据集引用,包括FIQA PL、ArxivClusteringS2S.v2和ELI5,这些清理工作使得基准测试更加精简和准确。
任务表更新
MTEB项目维护了一个全面的任务表,用于跟踪和管理所有基准测试任务。在1.35.2版本中,这个任务表得到了更新,反映了最新的任务状态和配置。这种持续的维护确保了基准测试的时效性和一致性。
FaMTEB检索任务修复
本次更新还包含了对FaMTEB检索任务的一个重要修复。原先的URL指向了设置页面而非主仓库URL,这可能导致用户获取信息时遇到困难。团队及时修正了这个链接问题,提高了用户体验和文档的可用性。
技术意义
训练数据标注的准确性对于文本嵌入模型的评估至关重要。不正确的标注可能导致评估结果偏差,影响模型间的公平比较。MTEB团队对这些细节的关注体现了项目对评估质量的高标准要求。
最大token限制的修复同样重要,因为不同的文本嵌入模型对输入长度的处理能力不同。确保评估时使用正确的长度限制,可以避免因输入截断或填充不当导致的性能评估失真。
总结
MTEB 1.35.2版本虽然是一个小版本更新,但包含了多项重要的修复和改进,特别是在训练数据标注方面的完善。这些工作虽然看似细微,但对于确保文本嵌入模型评估的准确性和可靠性具有实质性意义。项目团队对细节的关注和持续的维护,使得MTEB能够持续作为文本嵌入领域值得信赖的基准测试平台。
对于使用MTEB进行模型评估的研究人员和开发者来说,升级到最新版本可以获得更准确的评估结果,特别是在涉及上述提到的嵌入模型和任务时。这也体现了开源项目通过社区协作不断自我完善的良好生态。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00