Dio 并发请求限制的实现方案
2025-05-18 17:12:09作者:凤尚柏Louis
在基于 Dart 的 HTTP 客户端库 Dio 中,控制并发请求数量是一个常见的需求场景。本文将详细介绍如何在 Dio 中实现并发请求限制,帮助开发者更好地管理网络请求流量,避免服务器过载或触发 API 限流机制。
并发控制的核心原理
并发请求限制的核心在于建立一个请求队列和并发控制机制。当并发请求数达到上限时,新的请求需要排队等待,直到有正在进行的请求完成释放出"名额"后才能继续执行。
实现方案
基于计数锁和拦截器的实现
Dio 的拦截器机制为实现并发控制提供了天然的扩展点。我们可以通过以下组件构建并发控制系统:
- 计数器锁:用于跟踪当前活跃的请求数量
- 请求队列:存储等待执行的请求
- 拦截器:在请求发出前检查并发数,在请求完成后释放资源
具体实现步骤
- 创建一个并发控制器类,维护当前活跃请求数和最大并发数
- 在请求拦截器中:
- 检查当前活跃请求数是否已达上限
- 如果已达上限,将请求加入等待队列
- 否则增加活跃计数并放行请求
- 在响应/错误拦截器中:
- 减少活跃请求计数
- 检查等待队列并处理下一个请求
代码示例
class ConcurrencyController {
final int maxConcurrent;
int _activeCount = 0;
final Queue<Completer<void>> _queue = Queue();
ConcurrencyController(this.maxConcurrent);
Future<void> acquire() async {
if (_activeCount < maxConcurrent) {
_activeCount++;
return;
}
final completer = Completer<void>();
_queue.add(completer);
await completer.future;
}
void release() {
_activeCount--;
if (_queue.isNotEmpty) {
_queue.removeFirst().complete();
_activeCount++;
}
}
}
class ConcurrencyInterceptor extends Interceptor {
final ConcurrencyController controller;
ConcurrencyInterceptor(this.controller);
@override
Future<void> onRequest(
RequestOptions options,
RequestInterceptorHandler handler,
) async {
await controller.acquire();
super.onRequest(options, handler);
}
@override
void onResponse(Response response, ResponseInterceptorHandler handler) {
controller.release();
super.onResponse(response, handler);
}
@override
void onError(DioException err, ErrorInterceptorHandler handler) {
controller.release();
super.onError(err, handler);
}
}
使用方式
final dio = Dio();
final controller = ConcurrencyController(5); // 最大并发数为5
dio.interceptors.add(ConcurrencyInterceptor(controller));
高级优化方向
- 优先级队列:为请求添加优先级,高优先级请求可以插队
- 超时机制:为等待队列中的请求设置最大等待时间
- 动态调整:根据网络状况或服务器负载动态调整最大并发数
- 错误恢复:在请求失败时提供重试机制
适用场景
- API 限流:遵守第三方API的请求频率限制
- 资源控制:避免移动设备网络资源被过度占用
- 服务器保护:防止后端服务因突发流量过载
- 性能优化:在低带宽环境下优化请求顺序
总结
通过拦截器机制实现 Dio 的并发请求限制是一种优雅且高效的解决方案。开发者可以根据实际需求调整并发数,平衡响应速度和系统负载。这种模式不仅适用于 Dio,其设计思路也可以迁移到其他类似的网络请求库中。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
246
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
662
313
React Native鸿蒙化仓库
JavaScript
262
323
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
135
867
仓颉编程语言测试用例。
Cangjie
37
860
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218