如何使用 Kogito Operator 部署 Serverless 工作流
引言
在现代云原生应用开发中,Serverless 工作流已经成为一种流行的架构模式,它允许开发者专注于业务逻辑,而无需管理底层基础设施。Kogito Operator 是一个强大的工具,专门用于在 Kubernetes 和 OpenShift 环境中部署和管理 Kogito 服务。Kogito 服务是基于云原生的业务自动化平台,支持 BPMN 和 DMN 等标准,能够帮助开发者快速构建和部署 Serverless 工作流。
本文将详细介绍如何使用 Kogito Operator 部署 Serverless 工作流,并探讨其在实际应用中的优势。
准备工作
环境配置要求
在开始使用 Kogito Operator 之前,确保你的开发环境满足以下要求:
-
Kubernetes 或 OpenShift 集群:你需要一个运行中的 Kubernetes 或 OpenShift 集群。如果你还没有集群,可以使用 Minikube 或 Kind 在本地搭建一个测试环境。
-
Kogito Operator:你可以通过以下命令安装 Kogito Operator:
VERSION=<current_operator_version> kubectl apply -f "https://github.com/apache/incubator-kie-kogito-operator/releases/download/${VERSION}/kogito-operator.yaml"请将
<current_operator_version>替换为最新的版本号。 -
Kogito CLI:Kogito CLI 是一个命令行工具,用于与 Kogito Operator 进行交互。你可以通过以下命令安装:
curl -L https://github.com/kiegroup/kogito-operator/releases/download/<version>/kogito-cli-<os>-<arch>.tar.gz | tar xz
所需数据和工具
在部署 Kogito 服务之前,你需要准备以下数据和工具:
- BPMN 或 DMN 模型文件:Kogito 服务基于 BPMN(业务流程模型和标记)和 DMN(决策模型和标记)标准。你需要准备好这些模型文件,以便 Kogito Operator 能够部署它们。
- Kafka 和 Infinispan:Kogito 服务通常需要消息队列(如 Kafka)和持久化存储(如 Infinispan)。你可以使用 Kogito Operator 自动部署这些基础设施,或者手动配置它们。
模型使用步骤
数据预处理方法
在部署 Kogito 服务之前,你需要确保 BPMN 和 DMN 模型文件已经准备好,并且符合 Kogito 的要求。你可以使用 Kogito VSCode 扩展或独立的编辑器来创建和验证这些模型文件。
模型加载和配置
-
创建 Kogito 服务:使用 Kogito CLI 或直接通过 Kubernetes 资源文件创建 Kogito 服务。例如,使用以下命令:
kogito deploy my-service --path=/path/to/my-bpmn-files -
配置基础设施:Kogito Operator 可以自动部署 Kafka 和 Infinispan 等基础设施。你也可以手动配置这些资源,并将其与 Kogito 服务关联。
任务执行流程
- 部署服务:使用 Kogito Operator 部署 Kogito 服务。Kogito Operator 会自动处理服务的构建、部署和运行。
- 监控和管理:Kogito Operator 提供了丰富的监控和管理功能,你可以通过 Kogito CLI 或 Kubernetes 仪表板来查看服务的状态和日志。
结果分析
输出结果的解读
Kogito 服务部署成功后,你可以通过 REST API 或 Kogito Management Console 与服务进行交互。服务会根据 BPMN 或 DMN 模型文件执行相应的业务逻辑,并返回结果。
性能评估指标
Kogito Operator 提供了多种性能评估指标,包括服务响应时间、资源使用情况等。你可以通过 Kubernetes 的 Metrics Server 或 Prometheus 来监控这些指标,并根据需要进行优化。
结论
Kogito Operator 是一个强大的工具,能够帮助开发者快速部署和管理 Serverless 工作流。通过 Kogito Operator,开发者可以专注于业务逻辑的实现,而无需担心底层基础设施的管理。未来,Kogito Operator 还将继续优化,提供更多功能和更好的性能,帮助开发者构建更加高效和可靠的云原生应用。
如果你有任何问题或需要进一步的帮助,可以访问 Kogito Operator 的官方文档 或提交问题到 GitHub 仓库。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C036
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00