sysinfo库在Mac M3 Pro上CPU使用率显示异常问题分析
2025-07-01 14:48:50作者:姚月梅Lane
问题背景
sysinfo是一个用于获取系统信息的Rust库,但在Mac M3 Pro设备上使用时,开发者发现通过System结构体获取的全局CPU使用率数据存在异常。数据显示的CPU使用率基本保持不变,与系统自带的Activity Monitor或其他监控工具显示的实际CPU负载情况不符。
问题现象
开发者通过以下简单代码获取系统信息:
let mut sys = sysinfo::System::new_all();
sys.refresh_all();
dbg!(sys);
输出的结果中,global CPU usage字段值约为8.58,这个数值在系统高负载时(如编译大型项目)也几乎不变,与实际情况不符。
技术分析
经过深入调查,发现问题根源在于CPU使用率的获取方式。sysinfo库获取CPU使用率需要两次采样计算差值,而不是单次读取就能得到准确结果。
正确的使用方式应该是:
- 首次获取CPU信息
- 等待至少
MINIMUM_CPU_UPDATE_INTERVAL时间(通常为200ms) - 再次刷新CPU信息
- 此时获取的CPU使用率才是准确的
示例代码如下:
let mut sys = System::new_all();
sys.refresh_all();
std::thread::sleep(sysinfo::MINIMUM_CPU_UPDATE_INTERVAL);
sys.refresh_cpu();
dbg!(&sys);
原理说明
CPU使用率本质上是一个时间段内的计算值,而不是瞬时值。它表示的是CPU在单位时间内处于忙碌状态的比例。因此,要计算准确的CPU使用率,必须:
- 在时间点A获取CPU的总工作时间
- 在时间点B再次获取CPU的总工作时间
- 计算两个时间点之间的增量
- 用增量除以时间间隔得到使用率
这种计算方式确保了结果的准确性,也是大多数系统监控工具采用的方法。
最佳实践
对于需要持续监控CPU使用率的应用,建议:
- 初始化系统信息对象
- 首次刷新所有信息
- 进入监控循环:
- 睡眠适当时间间隔
- 刷新CPU信息
- 获取并处理CPU使用率数据
- 重复循环
这样可以确保获取到准确且实时的CPU使用率数据,特别是在高性能的Mac M系列处理器上。
总结
sysinfo库在Mac M3 Pro上显示CPU使用率异常的问题,实际上是使用方式不当导致的。通过正确的两次采样方法,可以获取准确的CPU使用率数据。这一现象也提醒我们,在使用系统监控类库时,需要理解其底层原理和正确的使用方法,才能获得可靠的结果。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 高效验证码识别解决方案:OCRServer资源文件深度解析与应用指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 Python开发者的macOS终极指南:VSCode安装配置全攻略
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
477
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
375
3.21 K
Ascend Extension for PyTorch
Python
169
190
暂无简介
Dart
615
140
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
仓颉编译器源码及 cjdb 调试工具。
C++
126
855
仓颉编程语言测试用例。
Cangjie
36
852
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
258