Lit-GPT项目中的TinyStories数据预处理问题解析
在Lit-GPT项目中,使用TinyStories数据集进行预训练时,开发者可能会遇到一个常见问题:训练过程在约29%进度时意外终止,并提示"找不到.bin文件"的错误。本文将深入分析这一问题的成因及解决方案。
问题现象
当运行pretrain.py脚本时,训练过程会在29%左右突然终止,控制台输出"AssertionError: No bin files found in data/TinyStories_all_data"错误。检查数据目录会发现,虽然原始的JSON文件存在,但缺少处理后的.bin文件。
技术背景
TinyStories数据集由50个JSON格式的分片组成,总大小约6.5GB。在Lit-GPT项目中,这些原始数据需要经过预处理转换为二进制格式(.bin)才能用于训练。预处理过程使用Python的ProcessPoolExecutor进行并行处理。
问题根源
-
并行处理不稳定:ProcessPoolExecutor在多进程处理大量数据时可能出现不稳定情况,特别是在系统资源不足时。
-
预处理中断:当预处理过程被意外中断时,系统不会自动清理不完整的中间文件,导致后续运行时报错。
-
资源竞争:默认的并行工作线程数可能过高,导致系统资源耗尽。
解决方案
-
调整并行度:修改tinystories.py中的ProcessPoolExecutor(max_workers=N)参数,降低并行工作线程数。根据系统配置,建议从4-8开始尝试。
-
清理并重试:手动删除data/TinyStories_all_data目录下的所有文件,然后重新运行脚本,让预处理过程从头开始。
-
监控资源使用:在预处理过程中监控CPU和内存使用情况,确保系统有足够资源。
最佳实践建议
-
分阶段处理:对于大型数据集,考虑分阶段进行预处理和训练。
-
日志记录:增强预处理脚本的日志功能,便于追踪问题。
-
资源预留:确保系统有足够的内存和CPU资源余量,避免因资源竞争导致失败。
-
错误恢复机制:在脚本中添加错误恢复逻辑,自动清理不完整的中间文件。
通过理解这一问题的技术背景和解决方案,开发者可以更有效地在Lit-GPT项目中使用TinyStories数据集进行模型预训练。记住,数据处理是深度学习工作流中的关键环节,合理的资源配置和错误处理机制能显著提高工作效率。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00