ggplot2中使用geom_qq与geom_text结合标注QQ图数据点的方法
2025-06-02 11:08:42作者:管翌锬
理解QQ图及其在ggplot2中的实现
QQ图(Quantile-Quantile Plot)是一种用于比较两个概率分布是否相似的图形方法。在R语言的ggplot2包中,我们可以使用geom_qq()和geom_qq_line()函数来创建QQ图及其参考线。
常见需求:在QQ图上标注数据点
在实际数据分析中,我们经常需要在QQ图上标注特定的数据点,以便识别异常值或特定观测值。然而,直接使用geom_text()与geom_qq()结合会遇到一些技术挑战。
问题分析与解决方案
初始尝试的问题
许多用户尝试以下代码来标注QQ图上的点:
ggplot(iris, aes(sample = Petal.Length)) +
geom_qq() +
geom_qq_line() +
geom_text(aes(label = Species,
x = after_stat(theoretical),
y = after_stat(sample)))
这会报错,因为geom_text()默认使用stat = "identity",无法访问geom_qq()计算得到的统计量。
正确的实现方法
要实现QQ图上的点标注,需要确保以下几点:
- 为
geom_text()指定正确的统计变换(stat = "qq") - 提供适当的分组变量(
group美学) - 使用
after_stat()访问计算后的统计量
完整代码如下:
ggplot(iris, aes(sample = Petal.Length, group = Species)) +
geom_qq() +
geom_qq_line() +
geom_text(aes(label = Species,
x = after_stat(theoretical),
y = after_stat(sample)),
stat = "qq")
技术原理
-
统计变换的一致性:
geom_qq()和geom_text()必须使用相同的统计变换才能访问相同的计算变量。 -
分组的重要性:在QQ图中,分组变量确保统计计算按组进行,避免数据混淆。
-
计算变量的访问:
after_stat()函数允许访问统计计算后的变量,如theoretical和sample。
实际应用建议
-
数据预处理:确保数据格式正确,分类变量已转换为因子。
-
图形优化:考虑使用
geom_label()替代geom_text()以获得更好的可读性。 -
标注策略:对于大数据集,选择性标注关键点而非所有点。
-
美学调整:适当调整文本大小、颜色和位置以避免重叠。
总结
在ggplot2中实现QQ图的数据点标注需要理解统计层的运作机制。通过正确设置统计变换和分组变量,我们可以有效利用after_stat()访问计算后的统计量,实现精确的点标注。这种方法不仅适用于QQ图,也可推广到其他需要统计变换后标注的图形场景中。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 开源电子设计自动化利器:KiCad EDA全方位使用指南 Jetson TX2开发板官方资源完全指南:从入门到精通
项目优选
收起
deepin linux kernel
C
24
9
暂无简介
Dart
648
149
Ascend Extension for PyTorch
Python
211
221
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
655
291
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
250
319
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
486
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.16 K
640
仓颉编程语言运行时与标准库。
Cangjie
136
874
openGauss kernel ~ openGauss is an open source relational database management system
C++
159
216