ggplot2中使用geom_qq与geom_text结合标注QQ图数据点的方法
2025-06-02 21:06:05作者:管翌锬
理解QQ图及其在ggplot2中的实现
QQ图(Quantile-Quantile Plot)是一种用于比较两个概率分布是否相似的图形方法。在R语言的ggplot2包中,我们可以使用geom_qq()和geom_qq_line()函数来创建QQ图及其参考线。
常见需求:在QQ图上标注数据点
在实际数据分析中,我们经常需要在QQ图上标注特定的数据点,以便识别异常值或特定观测值。然而,直接使用geom_text()与geom_qq()结合会遇到一些技术挑战。
问题分析与解决方案
初始尝试的问题
许多用户尝试以下代码来标注QQ图上的点:
ggplot(iris, aes(sample = Petal.Length)) +
geom_qq() +
geom_qq_line() +
geom_text(aes(label = Species,
x = after_stat(theoretical),
y = after_stat(sample)))
这会报错,因为geom_text()默认使用stat = "identity",无法访问geom_qq()计算得到的统计量。
正确的实现方法
要实现QQ图上的点标注,需要确保以下几点:
- 为
geom_text()指定正确的统计变换(stat = "qq") - 提供适当的分组变量(
group美学) - 使用
after_stat()访问计算后的统计量
完整代码如下:
ggplot(iris, aes(sample = Petal.Length, group = Species)) +
geom_qq() +
geom_qq_line() +
geom_text(aes(label = Species,
x = after_stat(theoretical),
y = after_stat(sample)),
stat = "qq")
技术原理
-
统计变换的一致性:
geom_qq()和geom_text()必须使用相同的统计变换才能访问相同的计算变量。 -
分组的重要性:在QQ图中,分组变量确保统计计算按组进行,避免数据混淆。
-
计算变量的访问:
after_stat()函数允许访问统计计算后的变量,如theoretical和sample。
实际应用建议
-
数据预处理:确保数据格式正确,分类变量已转换为因子。
-
图形优化:考虑使用
geom_label()替代geom_text()以获得更好的可读性。 -
标注策略:对于大数据集,选择性标注关键点而非所有点。
-
美学调整:适当调整文本大小、颜色和位置以避免重叠。
总结
在ggplot2中实现QQ图的数据点标注需要理解统计层的运作机制。通过正确设置统计变换和分组变量,我们可以有效利用after_stat()访问计算后的统计量,实现精确的点标注。这种方法不仅适用于QQ图,也可推广到其他需要统计变换后标注的图形场景中。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-X1-7BSpark-Prover-X1-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer-X1-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile015
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 2023年最新HTMLCSSJS组件库:提升前端开发效率的必备资源 Qt控件CSS样式实例大全 - 打造现代化GUI界面的终极指南 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
306
2.7 K
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
138
169
暂无简介
Dart
598
130
React Native鸿蒙化仓库
JavaScript
235
309
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
632
232
仓颉编译器源码及 cjdb 调试工具。
C++
123
703
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.06 K
616
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
197
74
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
460