首页
/ 在Darts中复现TiDE论文结果的技术要点解析

在Darts中复现TiDE论文结果的技术要点解析

2025-05-27 07:46:18作者:苗圣禹Peter

背景介绍

TiDE(Time-series Dense Encoder)是一种基于深度学习的时间序列预测模型,由Google Research团队提出。该模型在多个基准数据集上表现出色,特别是在长序列预测任务中。本文将详细分析如何在Darts框架中正确复现TiDE论文中的实验结果。

数据预处理关键点

在复现过程中,数据预处理是第一个需要注意的关键环节:

  1. 数据标准化:TiDE论文明确指出使用了标准化(Standardization)而非归一化(Normalization)。标准化使用训练集的均值和标准差进行转换,这是与许多默认实现不同的地方。

  2. 数据分割比例:论文中明确采用7:1:2的训练-验证-测试集分割比例。这与代码库中6:2:2的比例不同,需要特别注意。

  3. 可逆实例归一化:TiDE模型中启用了可逆实例归一化(Reversible Instance Normalization),这是提高模型性能的重要技术。

模型训练配置

正确配置模型训练参数对复现结果至关重要:

  1. 学习率调度:TiDE使用了余弦退火学习率调度(Cosine Annealing with Warm Restarts),需要正确配置周期参数T_0。

  2. 梯度裁剪:论文实现中应用了梯度裁剪技术,通常设置为0.5左右的值。

  3. 随机种子:虽然论文代码中设置了随机种子(1024),但在实际实验中可能被覆盖,需要注意随机性的控制。

评估过程的注意事项

评估阶段有几个容易出错的环节:

  1. 预测结果的反标准化:在使用标准化后的数据进行训练后,评估时需要将预测结果反标准化回原始尺度,再计算指标。

  2. 历史预测方法:使用historical_forecasts方法时,要确保预测步长与论文一致(720步),并正确应用反变换。

  3. 指标计算:MAE和MSE应在原始数据尺度上计算,而非标准化后的数据。

常见问题与解决方案

在复现过程中,开发者可能会遇到以下问题:

  1. 指标值远低于论文结果:这通常是由于没有正确反标准化预测结果导致的。确保在计算指标前将预测值转换回原始尺度。

  2. 训练不稳定:可以尝试调整梯度裁剪值或学习率调度参数。余弦退火中的T_0参数(通常设置为10)对训练稳定性有重要影响。

  3. 性能差异:除了上述因素外,硬件差异(如GPU型号)、框架版本和底层库版本都可能导致细微的性能差异。

总结

成功复现TiDE论文结果需要严格遵循论文中的技术细节,包括数据预处理、模型配置、训练过程和评估方法。特别是数据标准化和反标准化的处理,以及学习率调度的正确配置,对最终结果有显著影响。通过系统性地验证每个环节,可以逐步缩小复现结果与论文报告的差距。

登录后查看全文
热门项目推荐

最新内容推荐

项目优选

收起
kernelkernel
deepin linux kernel
C
22
6
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
136
1.89 K
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
71
63
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.28 K
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
918
550
PaddleOCRPaddleOCR
飞桨多语言OCR工具包(实用超轻量OCR系统,支持80+种语言识别,提供数据标注与合成工具,支持服务器、移动端、嵌入式及IoT设备端的训练与部署) Awesome multilingual OCR toolkits based on PaddlePaddle (practical ultra lightweight OCR system, support 80+ languages recognition, provide data annotation and synthesis tools, support training and deployment among server, mobile, embedded and IoT devices)
Python
46
1
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
193
273
leetcodeleetcode
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
59
16