ChatGLM3多卡微调中的Tensor JSON序列化问题解决方案
问题背景
在使用ChatGLM3进行多卡微调训练时,许多开发者遇到了一个常见的技术问题:当训练过程中尝试保存检查点(checkpoint)时,系统会抛出"TypeError: Object of type Tensor is not JSON serializable"的错误。这个问题通常出现在使用多GPU进行LoRA微调的场景下,特别是在第一个检查点保存完成后继续训练时。
错误现象分析
该问题的典型表现是:
- 训练过程可以正常启动并运行初始阶段
- 在达到第一个检查点保存步数时,系统能够成功保存临时检查点文件(如tmp-checkpoint-500)
- 但在保存完成后继续训练时,程序会崩溃并报错
- 错误信息明确指出Tensor对象无法被JSON序列化
根本原因
经过技术分析,发现这个问题与DeepSpeed库的版本兼容性有关。在较新版本的DeepSpeed(如0.14.0)中,某些内部数据结构处理方式发生了变化,导致在多卡训练环境下保存模型状态时,尝试将Tensor对象直接序列化为JSON格式时失败。
解决方案
解决这个问题的有效方法是降级DeepSpeed到0.13.1版本。具体操作步骤如下:
-
首先卸载当前安装的DeepSpeed版本:
pip uninstall deepspeed -
安装指定版本的DeepSpeed:
pip install deepspeed==0.13.1 -
确保其他相关依赖也符合要求:
- transformers >= 4.36.2
- torch >= 2.1.1
- peft >= 0.6.2
完整微调命令
在正确配置环境后,可以使用以下命令启动多卡微调:
OMP_NUM_THREADS=1 torchrun --standalone --nnodes=1 --nproc_per_node=2 finetune_hf.py data/fix/ /path/to/chatglm3-6b configs/lora_multiple.yaml
重要提示:需要确保在lora配置文件中(deepspeed部分)已经取消注释,以便正确启用DeepSpeed优化。
技术建议
-
版本控制:在深度学习项目中,特别是涉及多卡训练时,保持各组件版本的兼容性非常重要。建议使用虚拟环境管理不同项目的依赖。
-
检查点验证:在训练开始前,可以尝试手动保存一个检查点来验证序列化功能是否正常。
-
日志监控:训练过程中密切关注日志输出,特别是在接近检查点保存步数时的系统状态。
-
硬件适配:虽然本文案例使用的是3090显卡,但解决方案同样适用于其他NVIDIA显卡,如4090等。
总结
多卡微调是训练大语言模型的重要手段,而版本兼容性问题常常是阻碍训练顺利进行的绊脚石。通过合理控制DeepSpeed版本,开发者可以避免Tensor JSON序列化问题,确保ChatGLM3模型在多卡环境下稳定训练。这一经验也提醒我们,在深度学习工程实践中,组件版本管理是需要特别关注的技术细节。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C082
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00