ChatGLM3多卡微调中的Tensor JSON序列化问题解决方案
问题背景
在使用ChatGLM3进行多卡微调训练时,许多开发者遇到了一个常见的技术问题:当训练过程中尝试保存检查点(checkpoint)时,系统会抛出"TypeError: Object of type Tensor is not JSON serializable"的错误。这个问题通常出现在使用多GPU进行LoRA微调的场景下,特别是在第一个检查点保存完成后继续训练时。
错误现象分析
该问题的典型表现是:
- 训练过程可以正常启动并运行初始阶段
- 在达到第一个检查点保存步数时,系统能够成功保存临时检查点文件(如tmp-checkpoint-500)
- 但在保存完成后继续训练时,程序会崩溃并报错
- 错误信息明确指出Tensor对象无法被JSON序列化
根本原因
经过技术分析,发现这个问题与DeepSpeed库的版本兼容性有关。在较新版本的DeepSpeed(如0.14.0)中,某些内部数据结构处理方式发生了变化,导致在多卡训练环境下保存模型状态时,尝试将Tensor对象直接序列化为JSON格式时失败。
解决方案
解决这个问题的有效方法是降级DeepSpeed到0.13.1版本。具体操作步骤如下:
-
首先卸载当前安装的DeepSpeed版本:
pip uninstall deepspeed
-
安装指定版本的DeepSpeed:
pip install deepspeed==0.13.1
-
确保其他相关依赖也符合要求:
- transformers >= 4.36.2
- torch >= 2.1.1
- peft >= 0.6.2
完整微调命令
在正确配置环境后,可以使用以下命令启动多卡微调:
OMP_NUM_THREADS=1 torchrun --standalone --nnodes=1 --nproc_per_node=2 finetune_hf.py data/fix/ /path/to/chatglm3-6b configs/lora_multiple.yaml
重要提示:需要确保在lora配置文件中(deepspeed部分)已经取消注释,以便正确启用DeepSpeed优化。
技术建议
-
版本控制:在深度学习项目中,特别是涉及多卡训练时,保持各组件版本的兼容性非常重要。建议使用虚拟环境管理不同项目的依赖。
-
检查点验证:在训练开始前,可以尝试手动保存一个检查点来验证序列化功能是否正常。
-
日志监控:训练过程中密切关注日志输出,特别是在接近检查点保存步数时的系统状态。
-
硬件适配:虽然本文案例使用的是3090显卡,但解决方案同样适用于其他NVIDIA显卡,如4090等。
总结
多卡微调是训练大语言模型的重要手段,而版本兼容性问题常常是阻碍训练顺利进行的绊脚石。通过合理控制DeepSpeed版本,开发者可以避免Tensor JSON序列化问题,确保ChatGLM3模型在多卡环境下稳定训练。这一经验也提醒我们,在深度学习工程实践中,组件版本管理是需要特别关注的技术细节。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~043CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









