ChatGLM3多卡微调中的Tensor JSON序列化问题解决方案
问题背景
在使用ChatGLM3进行多卡微调训练时,许多开发者遇到了一个常见的技术问题:当训练过程中尝试保存检查点(checkpoint)时,系统会抛出"TypeError: Object of type Tensor is not JSON serializable"的错误。这个问题通常出现在使用多GPU进行LoRA微调的场景下,特别是在第一个检查点保存完成后继续训练时。
错误现象分析
该问题的典型表现是:
- 训练过程可以正常启动并运行初始阶段
- 在达到第一个检查点保存步数时,系统能够成功保存临时检查点文件(如tmp-checkpoint-500)
- 但在保存完成后继续训练时,程序会崩溃并报错
- 错误信息明确指出Tensor对象无法被JSON序列化
根本原因
经过技术分析,发现这个问题与DeepSpeed库的版本兼容性有关。在较新版本的DeepSpeed(如0.14.0)中,某些内部数据结构处理方式发生了变化,导致在多卡训练环境下保存模型状态时,尝试将Tensor对象直接序列化为JSON格式时失败。
解决方案
解决这个问题的有效方法是降级DeepSpeed到0.13.1版本。具体操作步骤如下:
-
首先卸载当前安装的DeepSpeed版本:
pip uninstall deepspeed -
安装指定版本的DeepSpeed:
pip install deepspeed==0.13.1 -
确保其他相关依赖也符合要求:
- transformers >= 4.36.2
- torch >= 2.1.1
- peft >= 0.6.2
完整微调命令
在正确配置环境后,可以使用以下命令启动多卡微调:
OMP_NUM_THREADS=1 torchrun --standalone --nnodes=1 --nproc_per_node=2 finetune_hf.py data/fix/ /path/to/chatglm3-6b configs/lora_multiple.yaml
重要提示:需要确保在lora配置文件中(deepspeed部分)已经取消注释,以便正确启用DeepSpeed优化。
技术建议
-
版本控制:在深度学习项目中,特别是涉及多卡训练时,保持各组件版本的兼容性非常重要。建议使用虚拟环境管理不同项目的依赖。
-
检查点验证:在训练开始前,可以尝试手动保存一个检查点来验证序列化功能是否正常。
-
日志监控:训练过程中密切关注日志输出,特别是在接近检查点保存步数时的系统状态。
-
硬件适配:虽然本文案例使用的是3090显卡,但解决方案同样适用于其他NVIDIA显卡,如4090等。
总结
多卡微调是训练大语言模型的重要手段,而版本兼容性问题常常是阻碍训练顺利进行的绊脚石。通过合理控制DeepSpeed版本,开发者可以避免Tensor JSON序列化问题,确保ChatGLM3模型在多卡环境下稳定训练。这一经验也提醒我们,在深度学习工程实践中,组件版本管理是需要特别关注的技术细节。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00