Async-profiler中的原生内存分析崩溃问题分析
2025-05-28 16:42:41作者:邵娇湘
问题背景
Async-profiler是一款广泛使用的Java性能分析工具,它能够对JVM进行低开销的性能分析。在原生内存分析(nativemem)模式下,工具会通过动态库插桩来跟踪malloc等内存分配函数的调用情况。然而,在某些特定场景下,这种实现方式可能导致程序崩溃。
问题本质
Async-profiler在处理动态库时存在一个关键行为:它仅在nativemem分析模式下才会对库进行插桩以跟踪malloc调用。同时,工具会维护一个本地缓存(CodeCacheArray)来记录所有发现的库。这种设计导致可能出现以下情况:
- 一个库被记录在CodeCacheArray中,但并未被插桩以跟踪malloc调用
- 当库已经从内存中卸载后,async-profiler仍可能尝试对其进行nativemem分析相关的插桩操作
技术细节分析
问题的核心在于async-profiler对动态库生命周期的管理不够完善。具体表现为:
- 条件性插桩:工具只在nativemem模式下才进行malloc跟踪插桩,但会无条件记录所有发现的库
- 生命周期不一致:记录的库信息可能比实际加载的库存活时间更长
- 重入问题:多次切换分析模式可能导致状态不一致
复现场景
通过一个精心设计的测试程序可以稳定复现此问题:
- 首先加载一个自定义动态库并启动nativemem分析
- 执行一些内存分配操作后停止分析
- 卸载该库并加载另一个库
- 启动常规分析(非nativemem模式)并执行操作
- 再次尝试启动nativemem分析
在这个流程的最后一步,async-profiler会尝试对已经卸载的库进行插桩操作,导致崩溃。
解决方案思路
要解决这个问题,需要从以下几个方面进行改进:
- 完善库生命周期管理:确保CodeCacheArray中的记录与实际加载的库保持同步
- 插桩状态跟踪:明确记录哪些库已经进行了malloc跟踪插桩
- 安全访问机制:在对库进行操作前验证其是否仍然有效
技术实现建议
在具体实现上,可以考虑:
- 增加库加载/卸载的hook机制,及时更新内部缓存
- 为每个缓存的库记录其插桩状态
- 在尝试插桩前检查目标库的有效性
- 实现更健壮的错误处理机制,避免无效访问导致的崩溃
总结
这个案例展示了性能分析工具在与动态库交互时需要特别注意的生命周期管理问题。对于类似工具的开发,这提供了一个重要的经验教训:任何对目标程序的修改都必须严格考虑目标对象的状态和生命周期,特别是在动态加载/卸载的场景下。通过改进这一机制,可以显著提高async-profiler在复杂场景下的稳定性和可靠性。
对于用户而言,了解这一问题的存在有助于在遇到类似崩溃时更快定位原因,同时也能更合理地规划分析任务的执行顺序,避免触发此类边界条件。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 开源电子设计自动化利器:KiCad EDA全方位使用指南 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Python案例资源下载 - 从入门到精通的完整项目代码合集 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
246
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
313
React Native鸿蒙化仓库
JavaScript
262
324
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
655
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
330
137