Stacks Core项目中的区块提交逻辑重构与测试优化
2025-06-27 15:45:27作者:傅爽业Veleda
在区块链开发中,测试的稳定性对于确保系统可靠性至关重要。Stacks Core项目最近针对其测试套件中的区块提交逻辑进行了重要重构,解决了长期存在的测试不稳定问题。
问题背景
在Stacks Core的测试环境中,特别是在Nakamoto签名者模块中,存在一个核心问题:测试用例经常因为等待区块提交的逻辑不稳定而失败。这些问题主要表现在两个方面:
- 等待提交的区块可能没有针对正确的燃烧区块高度
- 提交可能指向错误的Stacks链尖端
这些问题源于测试代码中一个名为next_block_and_wait_for_commits的函数,该函数负责在测试期间等待新区块被提交。该函数实现中存在明显的缺陷,特别是它依赖于硬编码的10秒超时机制,这是测试不稳定的典型征兆。
原有实现分析
原函数的主要工作流程如下:
- 记录测试开始前的区块处理状态和提交计数
- 生成新区块
- 等待以下条件满足:
- 提交计数增加
- 区块处理计数增加(可选)
- 提交时间晚于区块处理时间(可选)
该实现存在几个关键问题:
- 使用全局计数器而非特定高度检查
- 依赖时间戳比较而非确定性状态检查
- 逻辑分支复杂,容易出错
- 硬编码超时机制导致测试不稳定
重构方案
重构工作主要围绕以下几个方面展开:
-
使用计数器变量替代时间检查:引入新的计数器变量来精确跟踪已提交的Stacks高度和燃烧高度,取代原有的时间戳比较机制。
-
简化等待逻辑:将复杂的条件分支简化为基于确定性的高度检查,确保测试只关注必要的状态变化。
-
统一测试工具:将分散在各测试用例中的提交等待逻辑集中到公共函数中,提高代码复用性和一致性。
-
逐步迁移策略:优先重构最常出现问题的测试用例,其余测试用例在出现问题时再进行相应调整。
技术实现细节
重构后的实现主要改进点包括:
- 移除了对
Instant和Duration的依赖,完全基于区块高度进行状态检查 - 使用原子计数器确保线程安全的状态跟踪
- 简化了条件判断逻辑,使测试行为更加可预测
- 提供了更清晰的错误信息,便于调试失败的测试用例
测试稳定性提升
通过这次重构,Stacks Core项目的测试套件获得了显著的稳定性提升:
- 消除了因时间竞争条件导致的测试失败
- 减少了测试运行时间,因为不再需要等待保守的超时期限
- 提高了测试的确定性,使CI/CD流程更加可靠
- 为未来添加更复杂的测试场景奠定了基础
总结
这次重构展示了在区块链测试中处理异步事件的最佳实践:避免依赖时间检查,转而使用确定性的状态变化作为同步点。这种模式不仅适用于Stacks Core项目,也可以为其他区块链项目的测试设计提供参考。
通过持续关注和优化测试基础设施,Stacks Core项目能够保持高代码质量,同时加速开发迭代周期,这对于任何区块链核心系统的长期健康发展都至关重要。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 PANTONE潘通AI色板库:设计师必备的色彩管理利器 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南
项目优选
收起
deepin linux kernel
C
24
8
暂无简介
Dart
643
149
Ascend Extension for PyTorch
Python
203
219
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
654
282
React Native鸿蒙化仓库
JavaScript
248
317
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.13 K
631
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
77
100
仓颉编译器源码及 cjdb 调试工具。
C++
130
861
仓颉编程语言运行时与标准库。
Cangjie
134
873