AWS Deep Learning Containers发布PyTorch ARM64架构推理镜像v1.6版本
AWS Deep Learning Containers(DLC)是亚马逊云科技提供的预构建深度学习容器镜像服务,它集成了主流深度学习框架和工具链,让开发者能够快速部署深度学习工作负载而无需从零开始配置环境。这些容器镜像经过AWS优化,可直接在EC2等云服务上运行,大幅提升了深度学习应用的部署效率。
本次发布的v1.6版本主要针对ARM64架构的PyTorch推理场景,提供了两个关键镜像:
镜像特性解析
CPU版本镜像
基于Ubuntu 22.04操作系统,预装了PyTorch 2.5.1 CPU版本及其相关生态组件。该镜像特别适合在ARM架构的EC2实例上运行轻量级推理任务,主要特点包括:
- Python 3.11运行时环境
- 完整的PyTorch推理工具链(torchserve、torch-model-archiver等)
- 科学计算必备库(NumPy 2.1.3、SciPy 1.14.1)
- 图像处理支持(OpenCV 4.10.0、Pillow 11.0.0)
- AWS工具集成(boto3、awscli等)
GPU版本镜像
针对需要GPU加速的推理场景,提供了CUDA 12.4支持的版本,包含:
- PyTorch 2.5.1与CUDA 12.4深度集成
- cuDNN等GPU加速库预配置
- 额外包含Pandas 2.2.3等数据分析工具
- 完整的CUDA工具链
技术细节与优化
这两个镜像都采用了最新的Ubuntu 22.04 LTS作为基础操作系统,确保了系统层面的稳定性和安全性。在软件包选择上,AWS团队做了精心配置:
-
编译器工具链:集成了GCC 11和libstdc++6等关键开发库,为ARM64架构进行了特别优化。
-
依赖管理:使用pip管理Python包,确保各组件版本间的兼容性。例如,NumPy升级到了2.x系列,带来了显著的性能提升。
-
开发便利性:虽然主要用于推理场景,但仍包含了emacs等开发工具,方便用户直接在容器内进行调试。
-
轻量化设计:通过合理选择依赖项,在保证功能完整性的同时控制了镜像体积。
典型应用场景
这些预构建镜像特别适合以下场景:
-
边缘计算部署:在基于ARM架构的边缘设备上部署轻量级PyTorch模型。
-
成本敏感型推理服务:利用ARM实例通常较低的成本优势,部署大规模推理服务。
-
快速原型开发:开发者可以立即获得一个配置完善的PyTorch环境,无需花费时间在环境配置上。
-
CI/CD流水线:作为标准化的构建和测试环境,确保开发与生产环境的一致性。
版本兼容性说明
值得注意的是,这些镜像使用了PyTorch 2.5.1这一较新版本,用户需要确保自己的模型代码与该版本兼容。特别是:
- TorchVision 0.20.1带来了一些API变化
- NumPy 2.x与之前版本有少量不兼容改动
- CUDA 12.4需要相应的驱动支持
对于需要长期稳定性的生产环境,建议先在测试环境中验证模型在这些新版本上的运行情况。
总结
AWS Deep Learning Containers的这次更新,为ARM64架构上的PyTorch推理工作负载提供了开箱即用的解决方案。无论是追求成本效益的CPU推理,还是需要高性能的GPU加速场景,这些预构建镜像都能显著降低用户的运维复杂度,让团队可以更专注于模型本身和业务逻辑的开发。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00