Ragas项目中关于上下文精度指标使用问题的解析
2025-05-26 05:02:04作者:咎岭娴Homer
概述
在使用Ragas项目进行检索增强生成(RAG)系统评估时,开发者可能会遇到关于上下文精度指标(Context Precision)和非LLM上下文召回指标(Non-LLM Context Recall)的配置问题。这些问题主要源于数据集列名与指标要求不匹配,本文将深入分析这些问题的本质及解决方案。
上下文精度指标的使用问题
Ragas项目中的上下文精度指标有两种变体:带参考版本和不带参考版本。当使用带参考版本的上下文精度指标时,系统会要求数据集中必须包含名为"reference"的列。这是因为该指标需要将生成的上下文与参考标准进行比较,以评估检索系统的精确性。
非LLM上下文召回指标的要求
另一个常见问题是关于非LLM上下文召回指标的要求。该指标需要数据集中包含名为"reference_contexts"的列。这个指标用于评估检索系统能够从参考上下文中召回相关信息的能力,是衡量RAG系统检索组件效果的重要指标。
数据集格式适配方案
为了正确使用这些指标,开发者需要确保数据集格式符合Ragas的预期。以下是推荐的适配方案:
-
基本字段映射:
- 将"question"映射为"user_input"
- 将"answer"映射为"response"
- 将"contexts"映射为"retrieved_contexts"
- 将"ground_truths"映射为"reference"
-
特殊指标要求:
- 对于非LLM上下文召回指标,确保参考上下文以"reference_contexts"命名
- 对于带参考的上下文精度指标,确保参考标准以"reference"命名
最佳实践建议
-
统一数据格式:建议在项目初期就采用Ragas推荐的数据格式,避免后期适配带来的额外工作。
-
指标选择策略:根据评估需求选择合适的指标变体,如果不需要参考比较,可以选择不带参考版本的指标。
-
数据预处理:在将数据加载到Ragas前,进行必要的数据清洗和格式转换,确保各字段符合指标要求。
总结
理解并正确配置Ragas项目中的评估指标是获得准确评估结果的关键。通过合理的数据格式适配和指标选择,开发者可以全面评估RAG系统的各个组件性能,从而进行有针对性的优化。本文提供的解决方案不仅解决了当前的问题,也为后续的评估工作提供了参考框架。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++036Hunyuan3D-Part
腾讯混元3D-Part00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0283Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
160
2.03 K

deepin linux kernel
C
22
6

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
533
60

React Native鸿蒙化仓库
C++
198
279

Ascend Extension for PyTorch
Python
46
78

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
947
556

openGauss kernel ~ openGauss is an open source relational database management system
C++
146
191

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
381
17

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
996
396