Ragas项目中关于上下文精度指标使用问题的解析
2025-05-26 05:09:08作者:咎岭娴Homer
概述
在使用Ragas项目进行检索增强生成(RAG)系统评估时,开发者可能会遇到关于上下文精度指标(Context Precision)和非LLM上下文召回指标(Non-LLM Context Recall)的配置问题。这些问题主要源于数据集列名与指标要求不匹配,本文将深入分析这些问题的本质及解决方案。
上下文精度指标的使用问题
Ragas项目中的上下文精度指标有两种变体:带参考版本和不带参考版本。当使用带参考版本的上下文精度指标时,系统会要求数据集中必须包含名为"reference"的列。这是因为该指标需要将生成的上下文与参考标准进行比较,以评估检索系统的精确性。
非LLM上下文召回指标的要求
另一个常见问题是关于非LLM上下文召回指标的要求。该指标需要数据集中包含名为"reference_contexts"的列。这个指标用于评估检索系统能够从参考上下文中召回相关信息的能力,是衡量RAG系统检索组件效果的重要指标。
数据集格式适配方案
为了正确使用这些指标,开发者需要确保数据集格式符合Ragas的预期。以下是推荐的适配方案:
-
基本字段映射:
- 将"question"映射为"user_input"
- 将"answer"映射为"response"
- 将"contexts"映射为"retrieved_contexts"
- 将"ground_truths"映射为"reference"
-
特殊指标要求:
- 对于非LLM上下文召回指标,确保参考上下文以"reference_contexts"命名
- 对于带参考的上下文精度指标,确保参考标准以"reference"命名
最佳实践建议
-
统一数据格式:建议在项目初期就采用Ragas推荐的数据格式,避免后期适配带来的额外工作。
-
指标选择策略:根据评估需求选择合适的指标变体,如果不需要参考比较,可以选择不带参考版本的指标。
-
数据预处理:在将数据加载到Ragas前,进行必要的数据清洗和格式转换,确保各字段符合指标要求。
总结
理解并正确配置Ragas项目中的评估指标是获得准确评估结果的关键。通过合理的数据格式适配和指标选择,开发者可以全面评估RAG系统的各个组件性能,从而进行有针对性的优化。本文提供的解决方案不仅解决了当前的问题,也为后续的评估工作提供了参考框架。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
538
3.76 K
暂无简介
Dart
775
192
Ascend Extension for PyTorch
Python
343
407
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
757
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
356
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
180
AscendNPU-IR
C++
86
142
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
250