Longhorn在Talos环境中缺失节点CPU/内存监控指标的解决方案
问题背景
在Talos Linux环境中部署Longhorn存储系统时,运维人员发现节点级别的CPU和内存使用情况监控指标(longhorn_node_cpu_usage_millicpu和longhorn_node_memory_usage_bytes)无法正常采集。这一问题直接影响了基于这些指标构建的监控告警系统,也使得集群资源使用情况的可观测性大打折扣。
根本原因分析
经过深入排查,发现问题的根源在于Talos Linux的默认安装配置中不包含Kubernetes Metrics Server组件。Metrics Server是Kubernetes集群中负责收集和聚合资源使用指标的核心组件,它为Horizontal Pod Autoscaler(HPA)和Vertical Pod Autoscaler(VPA)等自动扩缩容功能提供基础数据支持。
Longhorn的监控系统依赖于Metrics Server提供的API端点来获取节点和Pod级别的资源使用情况。具体来说,Longhorn Manager会通过以下API路径获取监控数据:
- 节点指标:/apis/metrics.k8s.io/v1beta1/nodes
- Pod指标:/apis/metrics.k8s.io/v1beta1/pods
当这些API端点不可用时,Longhorn就无法采集到节点的CPU和内存使用情况,从而导致相关监控指标缺失。
解决方案
安装Metrics Server
在Talos Linux集群中安装Metrics Server是解决此问题的标准方案。安装过程需要注意以下几点:
-
首先需要部署kubelet-serving-cert-approver组件,这是Talos环境下的必要前置条件,用于自动批准kubelet服务证书签名请求(CSR)。
-
然后部署官方提供的Metrics Server组件。在部署时,建议使用最新稳定版本以确保兼容性和安全性。
-
部署完成后,可以通过以下命令验证Metrics Server是否正常工作:
kubectl get --raw /apis/metrics.k8s.io/v1beta1正常返回应该显示nodes和pods两个资源类型。
配置注意事项
在Talos环境中部署Metrics Server时,可能需要特别关注以下配置项:
-
容器镜像源:确保能够正常拉取Metrics Server的容器镜像。
-
资源请求和限制:根据集群规模合理设置Metrics Server的资源配额。
-
高可用配置:在生产环境中,建议配置多个Metrics Server副本以确保服务可靠性。
-
数据保留策略:根据监控需求调整历史数据的保留时间。
验证方法
安装完成后,可以通过以下步骤验证Longhorn监控指标是否恢复正常:
-
检查Longhorn Manager的日志,确认不再出现"the server could not find the requested resource"相关错误。
-
查询Prometheus指标,确认longhorn_node_cpu_usage_millicpu和longhorn_node_memory_usage_bytes指标已存在并有数据。
-
运行Longhorn的集成测试套件中的test_node_metrics测试用例,确认测试通过。
长期维护建议
为了确保监控系统的长期稳定运行,建议:
-
定期检查Metrics Server的运行状态和资源使用情况。
-
关注Metrics Server的版本更新,及时升级以获得新功能和安全性修复。
-
建立监控告警机制,当指标采集异常时能够及时通知运维人员。
-
在集群扩容后,适当调整Metrics Server的资源配置以满足更高的监控数据采集需求。
通过以上措施,可以确保Longhorn在Talos环境中能够持续稳定地提供节点资源使用情况监控指标,为集群运维和容量规划提供可靠的数据支持。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00