AI2-THOR 使用与启动教程
2026-01-30 04:07:11作者:管翌锬
1. 项目介绍
AI2-THOR(AI2-Through Hoechest's Object Recognition)是一个开源平台,由Allen Institute for Artificial Intelligence(AI2)开发,旨在为视觉AI提供一个接近照片级的可交互框架。它包含多个环境(iTHOR、ManipulaTHOR、RoboTHOR),分别用于模拟不同的交互式AI研究,例如具身常识推理、机器人臂的视觉操作以及模拟与现实的对应研究。
AI2-THOR具备以下特点:
- 200+个定制的高质量场景。
- 2600+个经过精心设计的家居物体,涵盖100多种类型,每个物体都有详细的标注,支持近乎真实的物理交互。
- 多种代理类型支持,包括定制的LoCoBot代理、受Kinova 3启发的机器人操作代理以及无人机代理。
- 200+个动作,支持广泛的研究任务,如交互和导航基础上的具身AI。
- 支持多种图像模态和摄像头调整。
- 每个步骤后都有大量的环境状态信息可供使用,用于构建复杂的自定义奖励函数。
2. 项目快速启动
环境搭建
- 操作系统:Mac OS X 10.9+ 或 Ubuntu 14.04+
- 显卡:DX9(着色器模型3.0)或具有9.3功能级别的DX11。
- CPU:支持SSE2指令集的CPU。
安装
选择以下任一方式进行安装:
- 使用pip:
pip install ai2thor - 使用conda:
conda install -c conda-forge ai2thor - 使用Docker:使用AI2-THOR Docker配置,以便Unity 3D能够渲染场景。
最小示例
安装AI2-THOR后,运行以下代码以验证安装是否成功:
from ai2thor.controller import Controller
controller = Controller(scene="FloorPlan10")
event = controller.step(action="RotateRight")
metadata = event.metadata
print(event, event.metadata.keys())
3. 应用案例和最佳实践
AI2-THOR适用于多种研究场景,以下是一些应用案例和最佳实践:
- 场景理解:利用AI2-THOR中的丰富场景和物体进行场景分类、物体检测和语义分割等研究。
- 机器人导航:使用内置的代理和动作进行路径规划、导航任务和机器人控制。
- 物体操作:研究机器人臂如何抓取、移动和操纵物体。
4. 典型生态项目
AI2-THOR生态系统中的一些典型项目包括:
- Embodied AI Workshop:与CVPR等会议合作的研讨会,讨论具身AI的最新进展。
- AI2-THOR挑战:如 Rearrangement Challenge、ObjectNav Challenge 和 ALFRED Challenge,旨在推动AI2-THOR相关的技术研究。
通过以上教程,您可以开始使用AI2-THOR进行研究和开发。祝您使用愉快!
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134