Chainlit 开源项目教程
2024-08-11 07:30:42作者:董灵辛Dennis
项目介绍
Chainlit 是一个开源的异步 Python 框架,旨在帮助开发者快速构建可扩展的对话式 AI 或代理应用程序。它支持类似 ChatGPT 的应用、嵌入式聊天机器人、软件助手、Slack 和 Discord 集成以及自定义前端。Chainlit 兼容所有 Python 程序和库,并提供了与 LangChain、Llama Index、Autogen、OpenAI Assistant 和 Haystack 等库的集成。
项目快速启动
安装 Chainlit
首先,打开终端并运行以下命令来安装 Chainlit:
pip install chainlit
创建一个简单的 Chainlit 应用
创建一个名为 demo.py 的新文件,并添加以下代码:
import chainlit as cl
@cl.step(type="tool")
async def tool():
# 模拟工具
await cl.sleep(2)
return "Response from the tool"
@cl.on_message
async def main(message: cl.Message):
"""
每当用户在 UI 中输入消息时,都会调用此函数。
它会发送来自工具的中间响应,然后发送最终答案。
参数:
message: 用户的消息
返回:
None
"""
final_answer = cl.Message(content="")
await final_answer.send()
# 调用工具
final_answer.content = await tool()
await final_answer.update()
运行应用
在终端中运行以下命令来启动应用:
chainlit run demo.py -w
应用案例和最佳实践
案例一:嵌入式聊天机器人
Chainlit 可以轻松集成到现有网站中,提供嵌入式聊天机器人功能。以下是一个简单的示例:
import chainlit as cl
@cl.on_message
async def main(message: cl.Message):
await cl.Message(content=f"You said: {message.content}").send()
案例二:Slack 集成
Chainlit 支持与 Slack 集成,可以创建一个 Slack 机器人来响应用户消息:
import chainlit as cl
from slack_sdk import WebClient
client = WebClient(token="your-slack-token")
@cl.on_message
async def main(message: cl.Message):
response = client.chat_postMessage(channel="#general", text=message.content)
await cl.Message(content=f"Message sent to Slack: {response['ts']}").send()
典型生态项目
LangChain 集成
LangChain 是一个用于构建语言模型应用的框架。Chainlit 提供了与 LangChain 的集成,使得构建复杂的语言模型应用变得更加容易:
import chainlit as cl
from langchain import OpenAI, LLMChain
@cl.on_message
async def main(message: cl.Message):
llm = OpenAI(temperature=0.9)
chain = LLMChain(llm=llm, prompt=message.content)
response = chain.run(message.content)
await cl.Message(content=response).send()
Llama Index 集成
Llama Index 是一个用于构建知识图谱的库。Chainlit 可以与 Llama Index 集成,创建一个交互式的知识图谱应用:
import chainlit as cl
from llama_index import GPTVectorStoreIndex
@cl.on_message
async def main(message: cl.Message):
index = GPTVectorStoreIndex.from_documents(documents)
response = index.query(message.content)
await cl.Message(content=response).send()
通过这些集成,Chainlit 可以与各种生态项目协同工作,提供强大的对话式 AI 功能。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案 PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 PANTONE潘通AI色板库:设计师必备的色彩管理利器 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 RadiAnt DICOM Viewer 2021.2:专业医学影像阅片软件的全面指南
项目优选
收起
deepin linux kernel
C
24
6
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
269
2.54 K
暂无简介
Dart
558
124
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
57
11
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
仓颉编程语言运行时与标准库。
Cangjie
126
104
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
357
1.84 K
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
434
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
605
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
728
70