Chainlit 开源项目教程
2024-08-11 07:30:42作者:董灵辛Dennis
项目介绍
Chainlit 是一个开源的异步 Python 框架,旨在帮助开发者快速构建可扩展的对话式 AI 或代理应用程序。它支持类似 ChatGPT 的应用、嵌入式聊天机器人、软件助手、Slack 和 Discord 集成以及自定义前端。Chainlit 兼容所有 Python 程序和库,并提供了与 LangChain、Llama Index、Autogen、OpenAI Assistant 和 Haystack 等库的集成。
项目快速启动
安装 Chainlit
首先,打开终端并运行以下命令来安装 Chainlit:
pip install chainlit
创建一个简单的 Chainlit 应用
创建一个名为 demo.py 的新文件,并添加以下代码:
import chainlit as cl
@cl.step(type="tool")
async def tool():
# 模拟工具
await cl.sleep(2)
return "Response from the tool"
@cl.on_message
async def main(message: cl.Message):
"""
每当用户在 UI 中输入消息时,都会调用此函数。
它会发送来自工具的中间响应,然后发送最终答案。
参数:
message: 用户的消息
返回:
None
"""
final_answer = cl.Message(content="")
await final_answer.send()
# 调用工具
final_answer.content = await tool()
await final_answer.update()
运行应用
在终端中运行以下命令来启动应用:
chainlit run demo.py -w
应用案例和最佳实践
案例一:嵌入式聊天机器人
Chainlit 可以轻松集成到现有网站中,提供嵌入式聊天机器人功能。以下是一个简单的示例:
import chainlit as cl
@cl.on_message
async def main(message: cl.Message):
await cl.Message(content=f"You said: {message.content}").send()
案例二:Slack 集成
Chainlit 支持与 Slack 集成,可以创建一个 Slack 机器人来响应用户消息:
import chainlit as cl
from slack_sdk import WebClient
client = WebClient(token="your-slack-token")
@cl.on_message
async def main(message: cl.Message):
response = client.chat_postMessage(channel="#general", text=message.content)
await cl.Message(content=f"Message sent to Slack: {response['ts']}").send()
典型生态项目
LangChain 集成
LangChain 是一个用于构建语言模型应用的框架。Chainlit 提供了与 LangChain 的集成,使得构建复杂的语言模型应用变得更加容易:
import chainlit as cl
from langchain import OpenAI, LLMChain
@cl.on_message
async def main(message: cl.Message):
llm = OpenAI(temperature=0.9)
chain = LLMChain(llm=llm, prompt=message.content)
response = chain.run(message.content)
await cl.Message(content=response).send()
Llama Index 集成
Llama Index 是一个用于构建知识图谱的库。Chainlit 可以与 Llama Index 集成,创建一个交互式的知识图谱应用:
import chainlit as cl
from llama_index import GPTVectorStoreIndex
@cl.on_message
async def main(message: cl.Message):
index = GPTVectorStoreIndex.from_documents(documents)
response = index.query(message.content)
await cl.Message(content=response).send()
通过这些集成,Chainlit 可以与各种生态项目协同工作,提供强大的对话式 AI 功能。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
531
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355