解决InternLM-XComposer项目中ShareGPT4V训练时的内存溢出问题
2025-06-28 04:00:49作者:沈韬淼Beryl
问题背景
在InternLM-XComposer项目的ShareGPT4V模型训练过程中,开发者遇到了CUDA内存溢出的问题。具体表现为训练过程中内存持续增长,最终导致GPU显存不足,无法完成训练任务。错误日志显示系统尝试分配3.90GiB显存时失败,而此时GPU总容量为39.59GiB,已分配28.77GiB,剩余3.20GiB空闲。
问题分析
从技术角度来看,这类内存溢出问题通常由以下几个因素导致:
-
模型规模与硬件限制不匹配:ShareGPT4V作为大型视觉语言模型,其参数量和计算复杂度较高,对显存需求大。
-
训练策略配置不当:默认的训练配置可能没有针对特定硬件环境进行优化。
-
梯度累积与内存管理:在反向传播过程中,梯度计算会占用大量显存,特别是当使用深度学习框架的自动微分功能时。
解决方案
针对这一问题,技术专家建议采用以下优化策略:
1. 使用DeepSpeed的ZERO3-offload技术
DeepSpeed的ZERO优化技术可以有效解决大模型训练中的内存问题。ZERO3-offload是ZERO优化策略的一种,它将优化器状态、梯度和参数分区到不同的GPU上,同时可以将部分计算卸载到CPU内存中,显著减少单个GPU的显存占用。
2. 梯度累积技术
通过梯度累积技术,可以在较小的batch size下模拟大batch size的训练效果。具体做法是:
- 将全局batch size分割为多个micro-batch
- 累积多个micro-batch的梯度后再更新模型参数
- 保持原始全局batch size不变,确保训练稳定性
3. 硬件配置建议
原项目开发团队使用的是2x8 A100(80G)GPU配置配合ZERO2设置。对于显存较小的设备,可以考虑:
- 降低单卡batch size
- 增加梯度累积步数
- 混合精度训练(FP16/FP32)
- 激活梯度检查点技术
实施建议
在实际操作中,建议按以下步骤调整训练配置:
- 在DeepSpeed配置文件中启用ZERO3-offload选项
- 合理设置梯度累积步数,平衡显存使用和训练效率
- 监控训练过程中的显存使用情况,动态调整参数
- 考虑使用torch的max_split_size_mb参数优化显存碎片问题
总结
大模型训练中的显存管理是一个复杂但关键的问题。通过合理组合使用ZERO优化、梯度累积等技术,可以在有限硬件资源下成功训练ShareGPT4V这样的视觉语言大模型。这些技术不仅适用于InternLM-XComposer项目,也可为其他大模型训练提供参考。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
终极Emoji表情配置指南:从config.yaml到一键部署全流程如何用Aider AI助手快速开发游戏:从Pong到2048的完整指南从崩溃到重生:Anki参数重置功能深度优化方案 RuoYi-Cloud-Plus 微服务通用权限管理系统技术文档 GoldenLayout 布局配置完全指南 Tencent Cloud IM Server SDK Java 技术文档 解决JumpServer v4.10.1版本Windows发布机部署失败问题 最完整2025版!SeedVR2模型家族(3B/7B)选型与性能优化指南2025微信机器人新范式:从消息自动回复到智能助理的进化之路3分钟搞定!团子翻译器接入Gemini模型超详细指南
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
525
3.72 K
Ascend Extension for PyTorch
Python
329
392
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
878
582
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
164
暂无简介
Dart
765
189
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
746
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
React Native鸿蒙化仓库
JavaScript
302
350