NVIDIA k8s-device-plugin混合GPU配置部署问题解析
2025-06-25 03:09:46作者:吴年前Myrtle
背景介绍
在使用NVIDIA k8s-device-plugin进行GPU资源管理时,用户经常会遇到需要为不同节点配置不同GPU模式的需求。特别是在生产环境中,可能需要部分节点使用默认的GPU独占模式,而其他节点使用MPS(Multi-Process Service)共享模式。这种混合配置场景下,资源分配可能会出现一些意料之外的问题。
问题现象
用户在部署GPU Operator时采用了混合配置方案,为不同节点分别设置了默认配置和MPS配置。虽然通过nvidia-smi命令可以确认MPS节点上的GPU确实处于"Exclusive Process"模式,但在实际调度请求GPU资源的Pod时却遇到了两类问题:
- 当请求
nvidia.com/gpu.shared: 1资源时,系统报告Insufficient nvidia.com/gpu.shared错误,提示没有可用节点 - 当使用
nvidia.com/mps.capable: "true"节点选择器并请求nvidia.com/gpu: 1时,出现更复杂的CDI设备注入错误
问题分析
资源请求不匹配问题
第一种情况中,请求共享GPU资源失败,表明虽然节点配置了MPS模式,但资源分配机制可能没有正确识别或暴露共享GPU资源。这通常与以下因素有关:
- GPU Operator配置中可能未正确启用共享GPU支持
- 节点标签或资源注册信息不完整
- 设备插件未能正确识别并上报共享GPU资源
CDI设备注入问题
第二种情况出现的CDI(Container Device Interface)相关错误更为复杂,表明容器运行时在尝试将GPU设备注入容器时遇到了问题。具体错误信息指向无法解析CDI设备规格,这可能由以下原因导致:
- containerd配置中CDI支持未正确启用
- CDI设备规格文件生成不完整或格式不正确
- 设备ID映射关系出现异常
解决方案探索
用户尝试了多种解决方法:
- 检查
/var/run/cdi/k8s.device-plugin.nvidia.com-gpu.json文件,确认请求的GPU ID确实存在 - 修改containerd配置,在
[plugins."io.containerd.grpc.v1.cri"]部分启用CDI支持 - 最终通过禁用CDI功能解决了问题
最佳实践建议
基于此案例,我们总结出以下部署建议:
- 混合环境配置:在需要同时支持独占和共享GPU的环境中,确保为不同节点正确设置标签和资源配置
- CDI配置考量:如果不需要CDI功能,可以在部署GPU Operator时显式禁用
- 资源请求匹配:确保Pod的资源请求与节点实际提供的资源类型相匹配
- 配置验证:部署后使用nvidia-smi等工具验证GPU模式是否符合预期
总结
NVIDIA k8s-device-plugin在混合GPU配置环境下可能会遇到资源分配问题,特别是当涉及CDI功能时。通过合理配置和问题排查,可以确保GPU资源在各种模式下都能被正确调度和使用。对于不需要CDI功能的场景,直接禁用CDI是一个有效的解决方案。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
STM32到GD32项目移植完全指南:从兼容性到实战技巧 开源电子设计自动化利器:KiCad EDA全方位使用指南 Python案例资源下载 - 从入门到精通的完整项目代码合集 网页设计期末大作业资源包 - 一站式解决方案助力高效完成项目 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.88 K
暂无简介
Dart
671
156
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
260
322
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
311
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
654
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1