NVIDIA k8s-device-plugin混合GPU配置部署问题解析
2025-06-25 11:12:05作者:吴年前Myrtle
背景介绍
在使用NVIDIA k8s-device-plugin进行GPU资源管理时,用户经常会遇到需要为不同节点配置不同GPU模式的需求。特别是在生产环境中,可能需要部分节点使用默认的GPU独占模式,而其他节点使用MPS(Multi-Process Service)共享模式。这种混合配置场景下,资源分配可能会出现一些意料之外的问题。
问题现象
用户在部署GPU Operator时采用了混合配置方案,为不同节点分别设置了默认配置和MPS配置。虽然通过nvidia-smi命令可以确认MPS节点上的GPU确实处于"Exclusive Process"模式,但在实际调度请求GPU资源的Pod时却遇到了两类问题:
- 当请求
nvidia.com/gpu.shared: 1资源时,系统报告Insufficient nvidia.com/gpu.shared错误,提示没有可用节点 - 当使用
nvidia.com/mps.capable: "true"节点选择器并请求nvidia.com/gpu: 1时,出现更复杂的CDI设备注入错误
问题分析
资源请求不匹配问题
第一种情况中,请求共享GPU资源失败,表明虽然节点配置了MPS模式,但资源分配机制可能没有正确识别或暴露共享GPU资源。这通常与以下因素有关:
- GPU Operator配置中可能未正确启用共享GPU支持
- 节点标签或资源注册信息不完整
- 设备插件未能正确识别并上报共享GPU资源
CDI设备注入问题
第二种情况出现的CDI(Container Device Interface)相关错误更为复杂,表明容器运行时在尝试将GPU设备注入容器时遇到了问题。具体错误信息指向无法解析CDI设备规格,这可能由以下原因导致:
- containerd配置中CDI支持未正确启用
- CDI设备规格文件生成不完整或格式不正确
- 设备ID映射关系出现异常
解决方案探索
用户尝试了多种解决方法:
- 检查
/var/run/cdi/k8s.device-plugin.nvidia.com-gpu.json文件,确认请求的GPU ID确实存在 - 修改containerd配置,在
[plugins."io.containerd.grpc.v1.cri"]部分启用CDI支持 - 最终通过禁用CDI功能解决了问题
最佳实践建议
基于此案例,我们总结出以下部署建议:
- 混合环境配置:在需要同时支持独占和共享GPU的环境中,确保为不同节点正确设置标签和资源配置
- CDI配置考量:如果不需要CDI功能,可以在部署GPU Operator时显式禁用
- 资源请求匹配:确保Pod的资源请求与节点实际提供的资源类型相匹配
- 配置验证:部署后使用nvidia-smi等工具验证GPU模式是否符合预期
总结
NVIDIA k8s-device-plugin在混合GPU配置环境下可能会遇到资源分配问题,特别是当涉及CDI功能时。通过合理配置和问题排查,可以确保GPU资源在各种模式下都能被正确调度和使用。对于不需要CDI功能的场景,直接禁用CDI是一个有效的解决方案。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0131
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
496
3.64 K
Ascend Extension for PyTorch
Python
300
338
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
307
131
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
868
479
暂无简介
Dart
744
180
React Native鸿蒙化仓库
JavaScript
297
346
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
66
20
仓颉编译器源码及 cjdb 调试工具。
C++
150
882