Intel RealSense D455在Jetson设备上ROS 2 Humble的权限问题解决方案
问题背景
Intel RealSense D455深度相机在Jetson设备上与ROS 2 Humble集成时,用户遇到了需要sudo权限才能正常工作的权限问题。这一现象在JetPack 6.x(Ubuntu 22.04)环境下尤为明显,而当用户降级到JetPack 5.x(Ubuntu 20.04)和ROS 2 Foxy时,问题得到解决。
技术分析
根本原因
该问题主要源于以下几个方面:
-
UVC权限问题:在较新的JetPack 6.x系统中,对USB视频类设备的权限管理更为严格,导致普通用户无法直接访问RealSense相机。
-
IMU支持变化:JetPack 6移除了对hiddraw功能的支持,而D455等配备IMU的RealSense相机依赖此功能获取惯性测量数据。
-
ROS 2设计原则:ROS 2不建议也不支持以root权限运行节点,这与需要sudo才能工作的相机驱动产生了冲突。
解决方案
方案一:使用libuvc后端编译安装
-
从源代码编译librealsense时启用libuvc后端,这种方法可以绕过内核直接访问设备:
cmake ../ -DFORCE_LIBUVC=true -DCMAKE_BUILD_TYPE=release \ -DBUILD_EXAMPLES=true -DBUILD_GRAPHICAL_EXAMPLES=true \ -DBUILD_WITH_CUDA=on -
安装完成后重新加载udev规则:
sudo cp ~/.99-realsense-libusb.rules /etc/udev/rules.d/99-realsense-libusb.rules && \ sudo udevadm control --reload-rules && \ sudo udevadm trigger
方案二:降级固件版本
对于D455相机,可以尝试降级固件至5.13.0.50版本:
- 注意:此方法仅适用于D415/D435/D435i/D455等较旧型号
- 新机型如D435f/D435if/D455f/D456/D457不应降级
方案三:使用JetPack 5.x环境
- 降级至JetPack 5.x(Ubuntu 20.04)
- 安装ROS 2 Foxy或从源代码构建ROS 2 Humble
方案四:安装RealSense MIPI驱动(高级)
对于坚持使用JetPack 6.x的用户:
- 安装RealSense MIPI平台驱动以添加USB连接的IMU支持
- 注意:此方法较为复杂,需要一定的技术能力
最佳实践建议
-
开发环境选择:对于大多数用户,建议使用JetPack 5.x + ROS 2 Foxy组合,这是最稳定的配置。
-
权限问题排查:如果遇到权限问题,建议:
- 检查udev规则是否已正确加载
- 确认当前用户是否在video和plugdev组中
- 测试在不加载ROS环境时相机是否能正常工作
-
IMU数据处理:如果项目需要IMU数据,在JetPack 6.x环境下必须使用MIPI驱动或降级固件方案。
结论
Intel RealSense D455在Jetson设备上的权限问题主要源于系统级别的变更和驱动兼容性问题。通过合理选择系统环境、驱动安装方式或固件版本,可以有效解决这一问题。对于大多数应用场景,采用JetPack 5.x环境是最简单可靠的解决方案;而对于必须使用JetPack 6.x的高级用户,则需要考虑更复杂的技术方案。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C075
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00