ml 的安装和配置教程
2025-05-19 04:32:34作者:殷蕙予
项目基础介绍
ml 是一个开源项目,旨在通过机器学习模型对代码库进行分析。该项目提供了构建和应用于通用抽象语法树(UAST)的机器学习模型的库和命令行工具。它被设计为与 source{d} engine 紧密集成,以实现特征提取的并行化。ml 项目是用 Python 3 编写的,并已在 Linux 和 macOS 上进行了测试。
项目使用的关键技术和框架
ml 项目使用了以下关键技术和框架:
- TensorFlow:用于训练机器学习模型,支持 CPU 和 GPU 版本。
- Spark:可选的分布式数据处理框架,用于大规模数据处理。
- enry:用于识别和分类代码库中的文件类型。
- UAST:通用抽象语法树,用于源代码的抽象表示。
- Swivel:用于交互式查看训练过程中的中间结果。
安装和配置准备工作
在开始安装 ml 项目之前,请确保您的系统已安装以下依赖项:
- Python 3
- TensorFlow
- Apache Spark(可选)
此外,还需要在您的系统上安装以下 native 库(以 Ubuntu 为例):
sudo apt install libxml2-dev libsnappy-dev
安装步骤
步骤 1:安装 TensorFlow
根据您的需要选择 TensorFlow 的 CPU 或 GPU 版本。在终端中运行以下命令之一:
pip3 install tensorflow # CPU 版本
# 或者
pip3 install tensorflow-gpu # GPU 版本
步骤 2:安装 Apache Spark(可选)
如果您打算使用 Apache Spark 进行分布式计算,您可以选择从官方网站下载并安装 Spark。安装完成后,设置环境变量 SPARK_HOME 指向 Spark 的安装目录,并在终端中运行以下命令:
export SPARK_HOME=/path/to/your/spark
步骤 3:安装 ml 项目
在终端中运行以下命令来安装 ml 项目:
pip3 install sourced-ml
如果您已经安装了 Apache Spark 并希望复用现有的安装,而不是通过 pip 下载,可以使用以下命令:
pip3 install -e "$SPARK_HOME/python"
pip3 install sourced-ml
步骤 4:验证安装
安装完成后,您可以通过在终端中运行以下命令来验证安装:
srcml --help
这应该会显示 ml 项目的帮助信息。
以上步骤即为 ml 项目的详细安装和配置指南。遵循这些步骤,您应该能够成功安装并开始使用 ml 项目。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
525
3.72 K
Ascend Extension for PyTorch
Python
329
391
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
877
578
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
162
暂无简介
Dart
764
189
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
746
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
React Native鸿蒙化仓库
JavaScript
302
350