Spring Data Redis 中 Sentinel TLS 连接配置的注意事项
背景介绍
在使用 Spring Data Redis 连接 Redis Sentinel 集群时,当集群启用了 TLS 加密传输,开发者可能会遇到连接建立失败的问题。本文深入分析这一问题的根源,并提供完整的解决方案。
问题现象
当开发者按照常规方式配置 Redis Sentinel 连接时,即使 RedisURI 中明确设置了 SSL 参数,仍然会遇到连接失败的情况。错误日志显示连接被重置,表明 SSL 握手未能成功完成。
根本原因分析
经过深入排查,发现 Spring Data Redis 在处理 Redis Sentinel 连接时存在一个关键问题:虽然 RedisURI 中可以配置 SSL 参数,但在实际创建连接工厂时,这些 SSL 配置并未被自动应用到最终的连接配置中。
具体来说,当使用 Lettuce 作为连接客户端时,RedisURI 中的 SSL 设置仅影响 Sentinel 节点的连接,而不会自动传播到后续与 Redis 主/从节点的连接。这导致了虽然 Sentinel 查询能够成功执行,但实际数据操作连接却因缺少 SSL 配置而失败。
解决方案
正确的配置方式需要显式指定 Lettuce 客户端配置:
// 创建 RedisURI 配置
RedisURI sentinelUri = RedisURI.Builder
.sentinel("sentinel-host", 26379, "master-name")
.withSsl(true)
.withVerifyPeer(false)
.withAuthentication("username", "password")
.build();
// 创建 Lettuce 客户端配置
LettuceClientConfiguration clientConfig = LettuceClientConfiguration.builder()
.useSsl()
.verifyPeer(SslVerifyMode.NONE)
.build();
// 创建 Redis 配置
RedisConfiguration redisConfig =
LettuceConnectionFactory.createRedisConfiguration(sentinelUri);
// 创建连接工厂
LettuceConnectionFactory connectionFactory =
new LettuceConnectionFactory(redisConfig, clientConfig);
connectionFactory.afterPropertiesSet();
最佳实践建议
-
统一配置管理:建议将 SSL 相关配置集中管理,避免分散在多处
-
配置验证:在应用启动时添加连接测试逻辑,确保配置正确
-
环境隔离:区分开发、测试和生产环境的 SSL 验证严格程度
-
连接池配置:对于生产环境,建议添加适当的连接池配置
深入理解
这种设计背后的原因是 Spring Data Redis 采用了分层配置架构:
- RedisURI:主要用于定义连接的基本参数和拓扑结构
- LettuceClientConfiguration:专门处理客户端级别的行为配置
- RedisConfiguration:整合前两者形成最终配置
这种分离使得系统更加灵活,但也要求开发者理解各层配置的职责边界。
总结
通过本文的分析,我们了解到在 Spring Data Redis 中配置 TLS 加密的 Sentinel 连接时,需要特别注意 SSL 配置的完整性和一致性。正确的做法是同时在 RedisURI 和 LettuceClientConfiguration 中配置 SSL 参数,确保所有层级的连接都能正确建立。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-X1-7BSpark-Prover-X1-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer-X1-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile015
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00