Spring for Apache Hadoop 技术文档
2024-12-20 10:01:28作者:卓炯娓
1. 安装指南
1.1 环境要求
- Java 8 或更高版本
- Apache Hadoop 2.7.x 或更高版本
- Gradle 构建工具
1.2 安装步骤
-
下载项目源码:
- 从 GitHub 仓库克隆项目源码:
git clone https://github.com/spring-projects/spring-hadoop.git
- 从 GitHub 仓库克隆项目源码:
-
构建项目:
- 进入项目根目录并运行以下命令进行构建:
cd spring-hadoop ./gradlew build
- 进入项目根目录并运行以下命令进行构建:
-
配置 Hadoop:
- 确保本地或远程的 Hadoop 集群已正确配置,并且可以通过
localhost访问。
- 确保本地或远程的 Hadoop 集群已正确配置,并且可以通过
-
运行测试:
- 如果需要运行测试,确保 Hadoop 集群已启动,并使用以下命令:
./gradlew test
- 如果需要运行测试,确保 Hadoop 集群已启动,并使用以下命令:
2. 项目的使用说明
2.1 项目概述
Spring for Apache Hadoop 是一个扩展了 Spring、Spring Batch 和 Spring Integration 的项目,旨在围绕 Hadoop 构建可管理和强大的数据处理管道。它支持从 HDFS 读取和写入数据,运行各种类型的 Hadoop 作业(如 Java MapReduce、Streaming、Hive、Spark、Pig),并使用 HBase。
2.2 主要功能
- Spring Batch 扩展:支持从 HDFS 读取和写入数据,运行 Hadoop 作业。
- Spring Integration 扩展:提供与 Hadoop 的集成,支持非 Java 开发者使用。
- POJO 编程模型:通过依赖注入和 POJO 模型简化 MapReduce 编程。
2.3 使用示例
以下是一个简单的 Spring Batch 作业示例,用于从 HDFS 读取数据并进行处理:
@Bean
public Job hdfsJob(JobBuilderFactory jobs, Step step) {
return jobs.get("hdfsJob")
.start(step)
.build();
}
@Bean
public Step step(StepBuilderFactory steps, HdfsReader reader, HdfsWriter writer) {
return steps.get("step")
.<String, String>chunk(100)
.reader(reader)
.writer(writer)
.build();
}
3. 项目API使用文档
3.1 HDFS 读写 API
- HdfsReader:从 HDFS 读取数据的接口。
- HdfsWriter:向 HDFS 写入数据的接口。
3.2 MapReduce API
- JobRunner:用于运行 MapReduce 作业的接口。
- MapReduceJob:定义 MapReduce 作业的配置。
3.3 Hive API
- HiveTemplate:用于执行 Hive 查询的模板类。
- HiveClientFactory:创建 Hive 客户端的工厂类。
4. 项目安装方式
4.1 通过 Gradle 构建
- 使用 Gradle 构建项目,生成可执行的 JAR 文件:
./gradlew build
4.2 通过 Maven 构建
- 如果项目依赖于 Maven,可以使用 Maven 进行构建:
mvn clean install
4.3 手动安装
- 将生成的 JAR 文件手动添加到项目的依赖中,并确保 Hadoop 环境已正确配置。
5. 贡献指南
5.1 参与社区
- 在 StackOverflow 上使用
spring-data-hadoop标签提问和回答问题。 - 在 JIRA 上创建问题或对感兴趣的问题进行评论和投票。
5.2 代码贡献
- 通过 GitHub 提交 Pull Request,遵循 Spring Framework 的贡献指南。
5.3 行为准则
- 遵守 Contributor Covenant 行为准则,确保社区的友好和包容性。
6. 保持联系
通过以上文档,您可以详细了解 Spring for Apache Hadoop 项目的安装、使用、API 以及贡献方式。希望这篇文档能帮助您更好地使用该项目。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
525
3.72 K
Ascend Extension for PyTorch
Python
329
391
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
877
578
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
162
暂无简介
Dart
764
189
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
746
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
113
137