OnnxStream项目在ARM64架构下的编译问题分析与解决方案
背景介绍
OnnxStream是一个专注于高效运行ONNX模型的轻量级推理框架,特别适合在资源受限的设备上部署。近期有用户在ARM64架构的Ubuntu 22.04系统上尝试编译该项目时遇到了构建错误。本文将详细分析问题原因并提供完整的解决方案。
问题现象
用户在ARM64架构的Ubuntu系统上使用GCC 11.4.0和CMake 3.22.1编译OnnxStream时,遇到了大量类型转换错误,主要集中在XNNPACK相关函数的调用上。错误信息显示编译器无法将某些函数指针类型转换为目标类型,这通常表明API接口不兼容。
根本原因分析
经过深入调查,发现问题的核心在于XNNPACK库的版本兼容性。OnnxStream项目依赖于特定版本的XNNPACK库,而用户最初使用的是较新的XNNPACK提交版本(579de32260742a24166ecd13213d2e60af862675),该版本中的API接口已经发生了变化,导致与OnnxStream代码不兼容。
解决方案
正确的XNNPACK版本选择
通过项目维护者的确认,OnnxStream需要与特定时间点的XNNPACK版本配合使用。以下是正确的构建步骤:
-
获取正确的XNNPACK版本:
git clone https://github.com/google/XNNPACK.git cd XNNPACK git rev-list -n 1 --before="2023-06-27 00:00" master git checkout <COMMIT_ID_FROM_THE_PREVIOUS_COMMAND> -
构建XNNPACK:
mkdir build cd build cmake -DXNNPACK_BUILD_TESTS=OFF -DXNNPACK_BUILD_BENCHMARKS=OFF .. cmake --build . --config Release
OnnxStream的构建配置
在确保XNNPACK正确构建后,可以继续构建OnnxStream:
-
克隆OnnxStream仓库:
git clone https://github.com/vitoplantamura/OnnxStream.git cd OnnxStream/src -
配置和构建:
mkdir build cd build cmake -DMAX_SPEED=ON -DOS_LLM=OFF -DOS_CUDA=OFF -DXNNPACK_DIR=/path/to/XNNPACK .. cmake --build . --config Release
性能表现
在成功构建后,用户报告在OrangePi 5(ARM64架构)上,每张图片的生成时间约为2分钟,这对于资源受限的嵌入式设备来说是一个相当不错的表现。
技术要点总结
-
版本控制的重要性:开源项目间的依赖关系往往对版本有严格要求,随意使用最新版本可能导致兼容性问题。
-
ARM64架构支持:虽然XNNPACK和OnnxStream都支持ARM64架构,但需要特别注意编译工具链和依赖库的版本匹配。
-
构建系统配置:CMake的配置选项(-D参数)需要根据目标平台和需求进行适当调整,特别是当项目有多个可选组件时。
最佳实践建议
-
在构建依赖关系复杂的项目时,建议使用全新的构建目录,避免历史构建产物的干扰。
-
对于嵌入式开发,可以优先考虑使用项目维护者推荐的特定版本,而不是最新版本。
-
遇到构建错误时,仔细阅读错误信息,特别是类型不匹配相关的错误,往往能快速定位问题根源。
通过遵循上述步骤和注意事项,开发者应该能够在ARM64架构上成功构建和运行OnnxStream项目,充分发挥其在资源受限设备上的优势。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C083
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00