OnnxStream项目在ARM64架构下的编译问题分析与解决方案
背景介绍
OnnxStream是一个专注于高效运行ONNX模型的轻量级推理框架,特别适合在资源受限的设备上部署。近期有用户在ARM64架构的Ubuntu 22.04系统上尝试编译该项目时遇到了构建错误。本文将详细分析问题原因并提供完整的解决方案。
问题现象
用户在ARM64架构的Ubuntu系统上使用GCC 11.4.0和CMake 3.22.1编译OnnxStream时,遇到了大量类型转换错误,主要集中在XNNPACK相关函数的调用上。错误信息显示编译器无法将某些函数指针类型转换为目标类型,这通常表明API接口不兼容。
根本原因分析
经过深入调查,发现问题的核心在于XNNPACK库的版本兼容性。OnnxStream项目依赖于特定版本的XNNPACK库,而用户最初使用的是较新的XNNPACK提交版本(579de32260742a24166ecd13213d2e60af862675),该版本中的API接口已经发生了变化,导致与OnnxStream代码不兼容。
解决方案
正确的XNNPACK版本选择
通过项目维护者的确认,OnnxStream需要与特定时间点的XNNPACK版本配合使用。以下是正确的构建步骤:
-
获取正确的XNNPACK版本:
git clone https://github.com/google/XNNPACK.git cd XNNPACK git rev-list -n 1 --before="2023-06-27 00:00" master git checkout <COMMIT_ID_FROM_THE_PREVIOUS_COMMAND>
-
构建XNNPACK:
mkdir build cd build cmake -DXNNPACK_BUILD_TESTS=OFF -DXNNPACK_BUILD_BENCHMARKS=OFF .. cmake --build . --config Release
OnnxStream的构建配置
在确保XNNPACK正确构建后,可以继续构建OnnxStream:
-
克隆OnnxStream仓库:
git clone https://github.com/vitoplantamura/OnnxStream.git cd OnnxStream/src
-
配置和构建:
mkdir build cd build cmake -DMAX_SPEED=ON -DOS_LLM=OFF -DOS_CUDA=OFF -DXNNPACK_DIR=/path/to/XNNPACK .. cmake --build . --config Release
性能表现
在成功构建后,用户报告在OrangePi 5(ARM64架构)上,每张图片的生成时间约为2分钟,这对于资源受限的嵌入式设备来说是一个相当不错的表现。
技术要点总结
-
版本控制的重要性:开源项目间的依赖关系往往对版本有严格要求,随意使用最新版本可能导致兼容性问题。
-
ARM64架构支持:虽然XNNPACK和OnnxStream都支持ARM64架构,但需要特别注意编译工具链和依赖库的版本匹配。
-
构建系统配置:CMake的配置选项(-D参数)需要根据目标平台和需求进行适当调整,特别是当项目有多个可选组件时。
最佳实践建议
-
在构建依赖关系复杂的项目时,建议使用全新的构建目录,避免历史构建产物的干扰。
-
对于嵌入式开发,可以优先考虑使用项目维护者推荐的特定版本,而不是最新版本。
-
遇到构建错误时,仔细阅读错误信息,特别是类型不匹配相关的错误,往往能快速定位问题根源。
通过遵循上述步骤和注意事项,开发者应该能够在ARM64架构上成功构建和运行OnnxStream项目,充分发挥其在资源受限设备上的优势。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~050CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0302- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









