pandas项目中的json_normalize功能改进探讨
2025-05-01 18:15:30作者:曹令琨Iris
背景介绍
在pandas数据处理过程中,经常会遇到需要处理嵌套JSON数据的情况。pandas提供的json_normalize函数是一个非常实用的工具,它能够将嵌套的JSON结构展平为表格形式。然而,在实际应用中,我们发现当对一个包含嵌套JSON列的DataFrame使用json_normalize时,输出结果会丢失原始DataFrame中的其他列信息。
当前问题分析
假设我们有一个包含交易信息的DataFrame,其中"dados"列存储了嵌套的JSON数据:
data = {
"id de transação": [1, 2, 3, 4, 5],
"nome": ["Alice", "Bob", "Charlie", "David", "Eve"],
"dados": [
{"data": "2024-01-01", "local": "São Paulo", "valor": 100.50},
{"data": "2024-01-02", "local": "Rio de Janeiro", "valor": 200.75},
{"data": "2024-01-03", "local": "Belo Horizonte", "valor": 300.00},
{"data": "2024-01-04", "local": "Curitiba", "valor": 400.25},
{"data": "2024-01-05", "local": "Porto Alegre", "valor": 500.50}
]
}
df = pd.DataFrame(data)
当我们直接对"dados"列使用json_normalize时,输出结果只包含展平后的JSON字段,而丢失了"id de transação"和"nome"列。
现有解决方案
目前,开发者需要手动将展平后的数据与原始DataFrame的其他列合并。常见的方法有两种:
- 使用concat合并:
pd.concat(
[
df[['id de transação', 'nome']],
pd.json_normalize(data=df['dados'], record_path=None),
],
axis=1,
)
- 使用join合并:
df[['id de transação', 'nome']].join(
pd.json_normalize(data=df['dados'], record_path=None)
)
这两种方法都能达到目的,但在处理大规模数据或分布式计算环境(如Dask)时,可能会遇到性能或数据一致性方面的问题。
改进建议
可以考虑在json_normalize函数中增加一个参数,允许用户指定要保留的原始列。这样函数内部可以自动处理列合并,既简化了代码,又提高了性能。
例如,可以设计如下接口:
pd.json_normalize(
data=df['dados'],
record_path=None,
keep_columns=['id de transação', 'nome']
)
分布式计算场景的考量
在Dask等分布式计算框架中,由于数据被分区处理,索引顺序可能无法保证。在这种情况下,保留一个唯一标识列(如交易ID)尤为重要。改进后的json_normalize可以确保即使在分布式环境下,也能正确关联展平后的数据与原始标识信息。
总结
json_normalize是pandas中处理嵌套JSON数据的强大工具,但在实际应用中存在一些不便之处。通过增加保留原始列的功能,可以显著提升用户体验,特别是在处理大规模分布式数据时。这种改进既保持了函数的简洁性,又增强了其在实际应用场景中的实用性。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
185
196
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
480
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
276
97
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.44 K
暂无简介
Dart
623
140
React Native鸿蒙化仓库
JavaScript
242
315
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
openGauss kernel ~ openGauss is an open source relational database management system
C++
157
210