modelscope/swift项目中InternVL2模型GPTQ量化失败问题分析
2025-05-31 04:48:29作者:瞿蔚英Wynne
问题背景
在modelscope/swift项目中使用InternVL2_5-78B-MPO模型进行GPTQ量化时,用户遇到了两个主要的技术问题。这类大语言模型的量化过程对于资源受限环境下的部署至关重要,但同时也面临着各种兼容性挑战。
问题现象
用户尝试使用swift工具对InternVL2_5-78B-MPO模型进行4位GPTQ量化时,遇到了以下两个阶段的错误:
-
量化阶段错误:主要与模型配置文件(config.json)的结构有关,InternVL模型的配置文件结构与标准Qwen模型存在差异,特别是在
use_cache参数的组织方式上。 -
推理阶段错误:量化后的模型在推理时抛出
RuntimeError("We can only quantize pure text model.")异常,表明当前实现仅支持纯文本模型的量化。
技术分析
配置文件结构差异
InternVL模型的config.json文件中,use_cache等参数被嵌套在llm_config属性下,这与标准Qwen模型的扁平化配置结构不同。这种差异导致量化工具在解析配置时无法正确识别相关参数。
多模态模型支持限制
当前swift实现中的GPTQ量化功能明确限制了只能处理纯文本模型,这源于代码中的硬性检查。而InternVL2作为视觉-语言多模态模型,自然无法通过这一检查。
解决方案
对于遇到的这两个问题,可以采取以下解决方案:
-
配置文件问题:
- 手动修改optimum库中的相关代码,使其能够正确解析InternVL的特殊配置结构
- 或者创建适配层,将InternVL的配置转换为标准Qwen格式
-
多模态模型限制:
- 临时解决方案:移除代码中的纯文本模型检查(位于量化验证逻辑中)
- 长期方案:向swift项目提交issue,请求增加对多模态模型量化的支持
最佳实践建议
对于需要在生产环境中使用InternVL等大模型量化的开发者,建议:
- 优先考虑使用官方支持的量化方案
- 对于实验性需求,可以fork项目进行定制化修改
- 密切关注模型量化领域的最新进展,特别是针对多模态模型的量化技术
总结
大模型量化过程中的兼容性问题十分常见,特别是对于InternVL这样的前沿多模态模型。开发者需要深入理解模型结构、量化原理以及工具链实现,才能有效解决这类问题。随着生态的发展,预期未来会有更完善的解决方案出现。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C090
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
473
3.52 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
223
90
暂无简介
Dart
721
174
Ascend Extension for PyTorch
Python
283
316
React Native鸿蒙化仓库
JavaScript
286
338
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
438
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
699
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19