Apache DataFusion 中 Duration 类型聚合的性能优化实践
2025-05-31 05:28:34作者:廉皓灿Ida
背景介绍
Apache DataFusion 是一个高性能的查询执行引擎,它使用 Rust 编写,支持 SQL 查询执行和 DataFrame API。在数据分析场景中,时间差(Duration)类型的聚合操作是非常常见的需求,比如计算平均响应时间、平均延迟等指标。
问题发现
在 DataFusion 项目中,开发团队注意到现有的 AVG 聚合函数在处理 Duration 类型数据时存在性能瓶颈。具体表现为:
- 当前实现没有针对 Duration 类型进行特殊优化
- 缺乏专门的基准测试来衡量 Duration 聚合的性能
- 无法直观评估优化后的性能提升效果
技术方案
为了解决这个问题,团队提出了以下技术方案:
1. 实现 GroupsAccumulator 优化
开发团队为 Duration 类型实现了专门的 GroupsAccumulator,这是一种针对分组聚合操作的优化机制。通过为特定数据类型定制累加器,可以显著提高聚合操作的性能。
2. 设计基准测试
为了验证优化效果,团队设计了基于 Clickbench 数据集的扩展基准测试。测试查询模拟了真实业务场景,如:
SELECT
"RegionID",
"UserAgent",
"OS",
AVG(to_timestamp("EventTime") - '2013-07-01T20:00:00'::timestamp) as a_start,
AVG(to_timestamp("EventTime") - '2013-07-01T20:00:00'::timestamp) as a_end
FROM
'hits_partitioned'
GROUP BY
"RegionID",
"UserAgent",
"OS"
ORDER BY
a_start, a_end DESC;
这个查询计算了不同地区、用户代理和操作系统组合下,事件时间相对于基准时间的平均时间差。
性能对比
在实际测试中,优化前后的性能对比结果令人印象深刻:
- 优化前执行时间:约 0.478 秒
- 优化后执行时间:约 0.306 秒
性能提升达到约 36%,证明了专门优化的有效性。
业务场景扩展
为了覆盖更多实际业务场景,团队还设计了更复杂的查询,例如分析不同操作系统的网络性能:
SELECT
"OS",
AVG(to_timestamp("ResponseEndTiming")-to_timestamp("ResponseStartTiming")) as avg_response_time,
AVG(to_timestamp("ResponseEndTiming")-to_timestamp("ConnectTiming")) as avg_latency
FROM
'data/hits_partitioned'
GROUP BY
"OS"
ORDER BY
avg_latency DESC
LIMIT 10
这个查询可以帮助识别响应时间和延迟最差的操作系统,为性能优化提供数据支持。
技术实现细节
在实现过程中,团队特别注意了以下几点:
- 避免不必要的子查询和连接:简化查询结构,减少中间结果集
- 合理设置分组键:通过组合多个维度(RegionID, UserAgent, OS)增加分组数量,更好地测试聚合性能
- 数据类型处理:正确处理时间戳和 Duration 类型的转换和计算
总结与展望
通过这次优化,DataFusion 在处理 Duration 类型聚合时的性能得到了显著提升。这不仅解决了当前性能瓶颈,还为后续类似优化提供了基准测试框架。
未来,团队计划:
- 扩展更多 Duration 相关的聚合函数优化
- 增加更复杂的业务场景测试
- 探索其他数据类型的专用累加器实现
这次优化实践展示了 DataFusion 项目对性能优化的持续追求,也体现了开源社区协作的力量。通过解决具体的技术挑战,DataFusion 正在成为更加强大和高效的数据处理引擎。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
246
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
313
React Native鸿蒙化仓库
JavaScript
262
324
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
655
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
330
137