EasyR1项目中训练效果差异分析与解决方案
2025-07-04 02:59:58作者:卓炯娓
在复现基于grounding任务的工作时,研究人员发现使用Open R1和Easy R1框架在相同数据和奖励条件下训练出的模型效果存在显著差异。Open R1框架下模型奖励值可达0.9,而Easy R1框架下仅能达到0.6左右。这一现象引起了技术团队的关注,并进行了深入分析。
问题现象
通过观察训练过程中的指标曲线,可以清晰地看到:
- 训练损失值在Easy R1框架下收敛较慢
- 奖励值提升幅度有限,最终稳定在0.6水平
- 模型性能与Open R1框架下的表现存在明显差距
原因分析
技术团队经过排查发现两个可能导致性能差异的关键因素:
-
图像尺寸调整问题:EasyR1框架默认会对输入图像进行像素限制的自动调整。虽然对于400×780左右尺寸的图片调整幅度不大,但这种预处理可能导致grounding标签与调整后的图像不完全匹配,从而影响模型学习效果。
-
位置ID处理问题:框架中位置ID的处理存在潜在缺陷,这会影响模型对空间位置信息的理解和学习,进而影响grounding任务的性能表现。
解决方案
针对上述问题,技术团队提出了以下改进建议:
-
关闭自动调整功能:在代码中禁用图像的自动尺寸调整功能,确保原始标注与输入图像严格对应。这一修改可以避免因图像处理导致的标注偏移问题。
-
修复位置ID处理:更新框架中对位置ID的处理逻辑,确保模型能够正确理解和利用空间位置信息。这一改进有助于提升模型在grounding任务中的定位准确性。
实施建议
对于遇到类似问题的研究人员,建议采取以下步骤:
- 检查输入图像与标注的对应关系,确认预处理流程是否影响了原始数据的空间一致性
- 验证位置编码的处理逻辑,确保空间信息的准确传递
- 在EasyR1框架下进行小规模实验,对比不同配置下的性能表现
- 根据实验结果调整模型参数和预处理流程
通过系统性地分析和解决这些问题,研究人员能够在EasyR1框架下获得与Open R1相当甚至更好的模型性能,为grounding任务的研究提供更可靠的技术支持。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
RadiAnt DICOM Viewer 2021.2:专业医学影像阅片软件的全面指南 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 Jetson TX2开发板官方资源完全指南:从入门到精通 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
186
203
暂无简介
Dart
629
143
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
242
316
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
383
3.56 K
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
481
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
266
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.11 K
624
仓颉编译器源码及 cjdb 调试工具。
C++
128
858