spooNN 项目教程
2024-09-17 01:44:08作者:温艾琴Wonderful
1. 项目介绍
spooNN 是一个基于 FPGA 的神经网络推理项目,旨在提供从训练到部署的端到端解决方案。该项目在 2018 年和 2019 年的 Design Automation Conference (DAC) 系统设计竞赛中表现优异,获得了最高的 FPS(每秒帧数)。spooNN 支持使用 TensorFlow 进行训练,并在硬件平台上进行部署,目标硬件平台包括 PYNQ 和 ULTRA96。
2. 项目快速启动
环境准备
-
安装依赖:
- Python 3.x
- TensorFlow
- Vivado HLS
- PYNQ 或 ULTRA96 开发板
-
克隆项目:
git clone https://github.com/fpgasystems/spooNN.git cd spooNN -
训练模型: 进入
mnist-cnn目录,运行训练脚本:cd mnist-cnn python train.py -
部署到 FPGA: 使用 Vivado HLS 将训练好的模型部署到 FPGA 上。具体步骤请参考项目文档。
3. 应用案例和最佳实践
案例一:MNIST 手写数字识别
在 mnist-cnn 目录下,项目提供了一个完整的端到端流程,包括训练、实现和 FPGA 部署。通过这个案例,用户可以快速上手并理解如何将神经网络模型部署到 FPGA 上。
案例二:对象检测
在 halfsqueezenet 和 recthalfsqznet 目录下,项目展示了如何在 PYNQ 和 ULTRA96 平台上进行对象检测。这些网络在 DAC 竞赛中表现优异,提供了高 FPS 和低功耗的最佳实践。
4. 典型生态项目
PYNQ
PYNQ 是一个开源项目,旨在简化 FPGA 的使用。通过 PYNQ,用户可以使用 Python 语言和 Jupyter Notebook 来开发和部署 FPGA 应用。spooNN 项目充分利用了 PYNQ 的特性,使得神经网络推理更加便捷。
ULTRA96
ULTRA96 是 96Boards 社区推出的一款高性能 FPGA 开发板。spooNN 项目支持在 ULTRA96 上进行部署,为用户提供了更多的硬件选择。
通过这些生态项目的支持,spooNN 能够更好地满足不同用户的需求,提供灵活且高效的神经网络推理解决方案。
登录后查看全文
热门项目推荐
暂无数据
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
540
3.77 K
Ascend Extension for PyTorch
Python
351
415
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
612
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
338
185
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
253
openGauss kernel ~ openGauss is an open source relational database management system
C++
169
233
暂无简介
Dart
778
193
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.35 K
758
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
115
141