Cosign多签名验证中的线程安全问题分析与修复
在软件供应链安全领域,签名验证是确保软件完整性和来源可信性的关键环节。Cosign作为一款流行的容器镜像签名工具,其验证机制的可靠性至关重要。本文将深入分析Cosign在多签名验证场景下发现的线程安全问题,以及相应的修复方案。
问题背景
在实际生产环境中,一个容器镜像可能会被多个实体签名。例如,软件供应商使用自己的PKI基础设施签名后,客户也可能使用自己的证书链对同一镜像进行二次签名。这种情况下,镜像会附加多个签名,每个签名对应不同的证书链。
当使用Cosign验证这类多重签名镜像时,如果仅提供根证书作为验证依据,验证过程会出现随机性失败。经过深入分析,发现这是由于Cosign验证过程中的线程安全问题导致的。
技术原理分析
Cosign的验证流程采用多线程并行处理多个签名。核心问题出现在以下几个关键环节:
-
共享状态污染:验证函数接收一个CheckOpts结构体指针,该结构体包含验证所需的各种选项,包括根证书和中间证书池。当中间证书池为空时,各线程会尝试从各自处理的签名中提取中间证书填充该池。
-
竞态条件:由于多个验证线程共享同一个CheckOpts实例,哪个线程先执行就会先设置中间证书池。这导致后续线程可能使用错误的中间证书链进行验证,特别是当不同签名使用不同中间证书时。
-
验证逻辑缺陷:TrustedCert函数使用当前设置的中间证书池与提供的根证书构建信任链。如果中间证书与根证书不匹配,验证就会失败。
问题复现
假设有以下两个签名:
- 签名1:使用证书链CompanyRootCA → CompanyIntermediate → CompanyLeaf
- 签名2:使用证书链ClientRootCA → ClientIntermediate → ClientLeaf
当仅提供CompanyRootCA进行验证时:
- 如果签名1的验证线程先执行,会设置CompanyIntermediate到中间证书池
- 签名2的验证会失败,因为ClientLeaf无法通过CompanyIntermediate验证到CompanyRootCA
反之亦然,这解释了验证结果的随机性。
解决方案
修复方案的核心思想是消除共享状态,具体实现包括:
-
引入中间证书局部变量:在验证每个签名时,使用局部变量而非共享的CheckOpts来存储中间证书。
-
新增安全验证函数:创建ValidateAndUnpackCertWithIntermediates函数,显式接收中间证书参数,避免修改共享状态。
-
保持API兼容性:保留原有函数签名,通过内部调用新函数的方式确保向后兼容。
实现细节
关键修改集中在verifyInternal函数中:
var pool *x509.CertPool
if len(chain) > 0 {
if len(chain) == 1 {
co.IntermediateCerts = nil
} else if co.IntermediateCerts == nil {
pool = x509.NewCertPool()
for _, cert := range chain[:len(chain)-1] {
pool.AddCert(cert)
}
}
}
verifier, err = ValidateAndUnpackCertWithIntermediates(cert, co, pool)
新函数ValidateAndUnpackCertWithIntermediates显式处理中间证书:
func ValidateAndUnpackCertWithIntermediates(cert *x509.Certificate, co *CheckOpts, intermediates *x509.CertPool) (signature.Verifier, error) {
if intermediates == nil {
intermediates = co.IntermediateCerts
}
chains, err := TrustedCert(cert, co.RootCerts, intermediates)
// ...其余验证逻辑
}
总结
该修复方案有效解决了多签名验证中的线程安全问题,同时保持了API的兼容性。这提醒我们在设计并发系统时:
- 需要谨慎处理共享状态
- 验证逻辑应当是无状态的
- 并行处理时,各任务应保持独立性
对于安全关键系统,这类线程安全问题可能导致严重的安全隐患,因此及时发现和修复至关重要。该问题的解决进一步提升了Cosign在多签名场景下的可靠性和稳定性。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00