Cosign多签名验证中的线程安全问题分析与修复
在软件供应链安全领域,签名验证是确保软件完整性和来源可信性的关键环节。Cosign作为一款流行的容器镜像签名工具,其验证机制的可靠性至关重要。本文将深入分析Cosign在多签名验证场景下发现的线程安全问题,以及相应的修复方案。
问题背景
在实际生产环境中,一个容器镜像可能会被多个实体签名。例如,软件供应商使用自己的PKI基础设施签名后,客户也可能使用自己的证书链对同一镜像进行二次签名。这种情况下,镜像会附加多个签名,每个签名对应不同的证书链。
当使用Cosign验证这类多重签名镜像时,如果仅提供根证书作为验证依据,验证过程会出现随机性失败。经过深入分析,发现这是由于Cosign验证过程中的线程安全问题导致的。
技术原理分析
Cosign的验证流程采用多线程并行处理多个签名。核心问题出现在以下几个关键环节:
-
共享状态污染:验证函数接收一个CheckOpts结构体指针,该结构体包含验证所需的各种选项,包括根证书和中间证书池。当中间证书池为空时,各线程会尝试从各自处理的签名中提取中间证书填充该池。
-
竞态条件:由于多个验证线程共享同一个CheckOpts实例,哪个线程先执行就会先设置中间证书池。这导致后续线程可能使用错误的中间证书链进行验证,特别是当不同签名使用不同中间证书时。
-
验证逻辑缺陷:TrustedCert函数使用当前设置的中间证书池与提供的根证书构建信任链。如果中间证书与根证书不匹配,验证就会失败。
问题复现
假设有以下两个签名:
- 签名1:使用证书链CompanyRootCA → CompanyIntermediate → CompanyLeaf
- 签名2:使用证书链ClientRootCA → ClientIntermediate → ClientLeaf
当仅提供CompanyRootCA进行验证时:
- 如果签名1的验证线程先执行,会设置CompanyIntermediate到中间证书池
- 签名2的验证会失败,因为ClientLeaf无法通过CompanyIntermediate验证到CompanyRootCA
反之亦然,这解释了验证结果的随机性。
解决方案
修复方案的核心思想是消除共享状态,具体实现包括:
-
引入中间证书局部变量:在验证每个签名时,使用局部变量而非共享的CheckOpts来存储中间证书。
-
新增安全验证函数:创建ValidateAndUnpackCertWithIntermediates函数,显式接收中间证书参数,避免修改共享状态。
-
保持API兼容性:保留原有函数签名,通过内部调用新函数的方式确保向后兼容。
实现细节
关键修改集中在verifyInternal函数中:
var pool *x509.CertPool
if len(chain) > 0 {
if len(chain) == 1 {
co.IntermediateCerts = nil
} else if co.IntermediateCerts == nil {
pool = x509.NewCertPool()
for _, cert := range chain[:len(chain)-1] {
pool.AddCert(cert)
}
}
}
verifier, err = ValidateAndUnpackCertWithIntermediates(cert, co, pool)
新函数ValidateAndUnpackCertWithIntermediates显式处理中间证书:
func ValidateAndUnpackCertWithIntermediates(cert *x509.Certificate, co *CheckOpts, intermediates *x509.CertPool) (signature.Verifier, error) {
if intermediates == nil {
intermediates = co.IntermediateCerts
}
chains, err := TrustedCert(cert, co.RootCerts, intermediates)
// ...其余验证逻辑
}
总结
该修复方案有效解决了多签名验证中的线程安全问题,同时保持了API的兼容性。这提醒我们在设计并发系统时:
- 需要谨慎处理共享状态
- 验证逻辑应当是无状态的
- 并行处理时,各任务应保持独立性
对于安全关键系统,这类线程安全问题可能导致严重的安全隐患,因此及时发现和修复至关重要。该问题的解决进一步提升了Cosign在多签名场景下的可靠性和稳定性。
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++096AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









