Vector AI 项目使用教程
2025-04-20 22:18:35作者:裘旻烁
1. 项目介绍
Vector AI 是一个开源框架,旨在帮助开发者快速、轻松地构建生产级别的基于向量的应用程序。它支持多媒体数据向量化、文档导向存储、向量相似性搜索、混合搜索、多模型加权搜索、向量操作、聚合、聚类以及向量分析等功能。Vector AI 提供了一个易于使用的 API 和 Python SDK,使得开发者能够快速实现神经网络搜索、语义搜索、个性化推荐等应用。
2. 项目快速启动
首先,确保您的系统中已经安装了 Python。以下是快速启动 Vector AI 的步骤:
# 安装 Vector AI
pip install vectorai
# 如果需要安装最新版本的 Vector AI,可以使用以下命令
pip install vectorai-nightly
然后,您可以通过以下代码示例来创建一个简单的文本/图像/音频搜索引擎:
from vectorai import ViClient, request_api_key
# 请求 API 密钥(替换以下占位符)
api_key = request_api_key(username='您的用户名', email='您的电子邮件', description='您的描述', referral_code='github_referred')
# 创建 ViClient 实例
vi_client = ViClient(username='您的用户名', api_key=api_key)
# 使用 ViText2Vec 模型进行文本编码
from vectorai.models.deployed import ViText2Vec
text_encoder = ViText2Vec(username='您的用户名', api_key=api_key)
# 准备文档数据
documents = [
{'_id': 0, 'color': 'red'},
{'_id': 1, 'color': 'blue'}
]
# 插入文档数据
vi_client.insert_documents('test-collection', documents, models={'color': text_encoder.encode})
# 搜索数据
vi_client.search('test-collection', text_encoder.encode('maroon'), 'color_vector_', page_size=2)
# 获取推荐
vi_client.search_by_id('test-collection', '1', 'color_vector_', page_size=2)
3. 应用案例和最佳实践
以下是几个使用 Vector AI 的应用案例和最佳实践:
- 多媒体数据搜索:将图像、音频等非结构化数据转换为向量,实现基于内容的搜索。
- 个性化推荐:根据用户的历史行为或偏好,为用户推荐相关性高的内容。
- 语义搜索:通过理解文本的深层含义,提供更准确的搜索结果。
为了获得更好的搜索性能和用户体验,建议:
- 在插入数据时,确保为每个向量字段添加
_vector_后缀,为每个 ID 字段添加_id后缀。 - 使用 VectorHub 提供的预训练模型,以便快速集成和测试新的模型。
4. 典型生态项目
Vector AI 生态系统中的其他相关项目包括:
- VectorHub:Vector AI 的主要模型仓库,提供与 scikit-learn 接口兼容的预训练模型。
- Vector AI Python SDK:用于简化 Python 开发者使用 Vector AI 的过程,提供快速原型设计和开发。
通过这些项目和工具,开发者可以更高效地构建和部署基于向量的应用程序。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C091
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
473
3.52 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
223
90
暂无简介
Dart
721
174
Ascend Extension for PyTorch
Python
283
316
React Native鸿蒙化仓库
JavaScript
286
338
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
438
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
699
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19