首页
/ Equinox项目中提取子网络可学习参数的实践指南

Equinox项目中提取子网络可学习参数的实践指南

2025-07-02 03:06:21作者:冯梦姬Eddie

在深度学习模型开发过程中,我们经常需要对模型的不同部分进行差异化处理。特别是在使用Equinox这样的深度学习框架时,如何精确控制模型中特定子网络的参数更新是一个常见需求。本文将详细介绍在Equinox框架下提取子网络可学习参数的技术方案。

问题背景

在复杂模型架构中,比如包含超网络(Hypernetwork)的模型中,我们可能希望只优化超网络部分的参数,而保持目标网络的参数不变。这种需求在元学习、参数预测等场景中尤为常见。

技术实现

Equinox提供了灵活的参数分区(partition)功能,可以精确控制哪些参数参与优化。以下是实现这一目标的完整方案:

import jax.tree_util as jtu
import equinox as eqx

# 首先创建基础过滤器,将所有参数标记为不可训练
base_filter = jtu.tree_map(lambda _: False, hyper_siren)

# 然后针对超网络部分创建专门的过滤器
hyper_filter = jtu.tree_map(eqx.is_array, hyper_siren.hyper_net)

# 组合两个过滤器,得到最终的分区方案
final_filter = eqx.tree_at(lambda tree: tree.hyper_net, base_filter, hyper_filter)

# 使用过滤器分区模型参数
params, static = eqx.partition(hyper_siren, final_filter)

技术解析

  1. 基础过滤器创建jtu.tree_map遍历整个模型树,将所有节点标记为不可训练(False)。这确保了默认情况下所有参数都不会被优化。

  2. 子网络识别eqx.is_array函数用于识别模型中的可训练参数(数组类型),这里专门针对超网络部分进行标记。

  3. 过滤器组合eqx.tree_at操作将基础过滤器和子网络过滤器组合起来,创建一个新的过滤器,其中只有超网络部分的参数被标记为可训练。

  4. 参数分区:最后使用eqx.partition根据过滤器将模型分为可训练参数(params)和静态部分(static)。

应用场景

这种技术特别适用于以下场景:

  • 超网络架构:只训练生成权重的超网络部分
  • 迁移学习:冻结预训练模型的大部分层,只微调特定层
  • 参数高效微调:如LoRA等适配器方法中控制哪些参数参与更新

注意事项

  1. 确保正确识别子网络结构,避免错误地包含或排除了某些参数
  2. 对于复杂嵌套结构,可能需要递归应用类似的过滤逻辑
  3. 分区后的参数可以直接用于优化器更新,而静态部分则保持不变

通过这种精细化的参数控制,开发者可以更灵活地设计模型训练策略,实现更高效的模型优化和更好的性能表现。

登录后查看全文
热门项目推荐

热门内容推荐

最新内容推荐

项目优选

收起
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
176
260
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
858
507
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
255
299
ShopXO开源商城ShopXO开源商城
🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
331
1.08 K
HarmonyOS-ExamplesHarmonyOS-Examples
本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
397
370
note-gennote-gen
一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0
kernelkernel
deepin linux kernel
C
21
5