OpenHaystack项目:如何通过Python服务实现蓝牙信标检测
2025-05-20 03:22:38作者:庞眉杨Will
OpenHaystack是一个开源的苹果Find My网络逆向工程项目,允许用户利用苹果的Find My网络来追踪自己的蓝牙设备。本文将详细介绍如何通过Python服务实现OpenHaystack的蓝牙信标检测功能。
核心原理
OpenHaystack的核心原理是利用苹果Find My网络来追踪蓝牙设备。该网络由全球数亿台苹果设备组成,能够匿名报告附近蓝牙设备的位置信息。要实现这一功能,需要以下几个关键组件:
- 认证信息:包括DSID(Directory Services Identifier)和认证令牌
- 公钥转换:将未压缩的公钥转换为压缩格式
- API请求:向苹果服务器发送查询请求
实现步骤
1. 获取认证信息
在macOS系统中,可以通过以下命令获取iCloud认证信息:
security find-generic-password -s iCloud -g
2. 生成认证头
获取到DSID和认证令牌后,需要将它们组合并进行Base64编码,生成HTTP请求的认证头:
import base64
dsid = "your_dsid"
auth_token = "your_auth_token"
credentials = f"{dsid}:{auth_token}"
auth_header = base64.b64encode(credentials.encode()).decode()
3. 公钥转换
OpenHaystack使用椭圆曲线加密的公钥来标识设备。需要将未压缩的公钥转换为压缩格式:
uncompressed = "BN3VU7limfjEMojbbnWqqz8PkquJIM22/EOOpegfVUyZlMgk+2VHfPvvzUd4rJFHYpkMA8x5egjr"
pubkey_bytes = base64.b64decode(uncompressed)
y_parity = pubkey_bytes[-1] % 2
compressed = bytes([0x02 + y_parity]) + pubkey_bytes[1:33]
data_field = base64.b64encode(compressed).decode()
4. 构建请求
构建完整的HTTP请求,包括请求头和请求体:
import requests
import datetime
headers = {
"Authorization": f"Basic {auth_header}",
"User-Agent": "com.apple.iCloudHelper/1.0",
"Content-Type": "application/json",
"X-Apple-I-Client-Time": datetime.datetime.utcnow().isoformat() + "Z",
"X-Apple-I-TimeZone": "UTC",
"X-Apple-Locale": "en_US",
}
payload = {
"search": [
{
"id": "设备唯一标识",
"data": data_field,
"previous": ""
}
]
}
response = requests.post(
"https://gateway.icloud.com/acsnservice/fetch",
json=payload,
headers=headers
)
常见问题解决
401未授权错误
出现401错误通常有以下几种原因:
- 认证信息过期:iCloud的认证令牌会定期失效,需要重新获取
- DSID或令牌错误:确保从系统获取的信息正确无误
- 请求头格式错误:检查Authorization头的生成过程是否正确
替代方案
如果直接调用苹果API遇到困难,可以考虑使用开源社区提供的替代实现,这些实现通常已经解决了认证和请求格式的问题。
安全注意事项
- 认证信息保护:DSID和认证令牌相当于iCloud账户的凭证,必须妥善保管
- 请求频率限制:苹果服务器对请求频率有限制,避免频繁请求
- 隐私考虑:使用Find My网络时应遵守当地隐私法规
总结
通过Python服务实现OpenHaystack的蓝牙信标检测功能,开发者可以构建自己的设备追踪系统。关键在于正确获取认证信息、处理加密密钥以及构建符合苹果API规范的请求。虽然过程中可能会遇到认证问题,但通过开源社区的资源和本文提供的解决方案,大多数问题都可以得到解决。
对于希望进一步开发的用户,建议深入研究苹果Find My网络的工作原理和加密机制,这将有助于开发更加强大和稳定的追踪解决方案。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0372Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0104AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
207
2.2 K

暂无简介
Dart
519
115

Ascend Extension for PyTorch
Python
62
94

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
86

React Native鸿蒙化仓库
C++
209
285

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
977
577

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

openGauss kernel ~ openGauss is an open source relational database management system
C++
146
193