Kiali项目中Tempo集成时Span引用信息缺失问题分析
问题背景
在Kiali与分布式追踪系统Tempo集成时,发现了一个关于Span引用信息的技术问题。当使用Tempo作为外部追踪系统时,从Kiali API获取的Span对象中缺少References信息,而同样的配置下如果使用Jaeger端口则能正常显示这些引用关系。
技术现象
通过Kiali的API端点查询Span数据时,当配置使用Tempo原生端口3200并设置provider为tempo时,返回的Span对象中References数组为空。而当配置使用Jaeger端口16685时,相同的Span数据则包含完整的References信息。
根本原因分析
经过技术团队深入调查,发现这个问题源于Tempo查询机制与Jaeger的差异。Tempo的查询接口在设计上无法返回parentSpanId字段,而这个字段正是构建References数组的关键数据。References数组在分布式追踪中用于表示Span之间的父子关系或跟随关系。
在Kiali内部实现中,References信息是通过parentSpanId转换而来。由于Tempo的返回数据格式与Jaeger不同,需要进行数据格式转换。但在当前实现中,这种转换未能正确处理parentSpanId字段。
影响评估
虽然References信息缺失,但经过评估这并不影响Kiali的核心功能。References数组在这些API调用中实际上并未被使用,因此从功能角度来看是完整的。技术团队考虑过获取完整追踪数据的方案,但考虑到性能开销(需要为每个查询结果发起多次调用),这种方案被判定为不切实际。
解决方案
技术团队提出了两种可能的解决方案:
-
移除对References数组的检查:由于这些信息在相关API调用中并未实际使用,可以直接移除相关检查逻辑。
-
针对Tempo做特殊处理:在代码中区分Tempo和Jaeger的情况,仅对Tempo返回的数据跳过References检查。
经过权衡,技术团队倾向于第一种方案,因为References信息在这些API调用中并非必需,且保持代码简洁性更为重要。
后续处理
该问题已被标记为需要回迁至Kiali 2.4版本,相关修复已经完成并合并。这确保了使用Tempo作为追踪系统的用户能够获得与其他追踪系统一致的使用体验。
技术启示
这个案例展示了不同分布式追踪系统实现细节上的差异,以及在集成多个追踪系统时可能遇到的兼容性问题。对于开发者而言,在设计系统集成时需要考虑不同实现的技术细节,同时也要评估功能需求与实际使用场景,避免过度设计。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C083
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00