JSR项目中模块发布排除问题的分析与解决
在JSR项目的使用过程中,开发者可能会遇到一个关于模块发布排除的常见问题。本文将深入分析该问题的成因,并提供详细的解决方案。
问题现象
当开发者尝试发布一个JSR包时,系统会在慢速类型检查阶段对node_modules中的深层依赖进行.d.ts文件检查,并报告类似以下的错误信息:
error[excluded-module]: module in package's module graph was excluded from publishing
--> /Projects/node_modules/.pnpm/oslo@1.1.3/node_modules/oslo/dist/crypto/index.d.ts
= hint: remove the module from 'exclude' and/or 'publish.exclude' in the config file
错误信息明确指出,在包的模块图中存在被排除发布的模块,这些模块虽然被包的导出所引用,但由于被排除在发布范围外,将在运行时导致错误。
问题根源
这个问题通常由以下几个原因导致:
-
配置文件中排除了关键模块:在jsr的配置文件(如deno.json或jsr.json)中,开发者可能无意中将某些必要模块添加到了'exclude'或'publish.exclude'列表中。
-
依赖关系处理不当:当项目依赖的第三方包(如示例中的oslo@1.1.3)内部模块被错误排除时,也会引发此问题。
-
类型检查机制:JSR在发布前会执行严格的类型检查,包括对依赖链中所有模块的.d.ts文件进行验证。
解决方案
要解决这个问题,开发者可以采取以下步骤:
-
检查配置文件:仔细审查项目中的配置文件(通常是deno.json或jsr.json),查找'exclude'和'publish.exclude'字段。确保这些字段没有错误地排除了必要的模块。
-
验证依赖关系:如果问题来自第三方依赖(如示例中的oslo包),考虑:
- 更新到该依赖的最新版本
- 检查该依赖是否有已知的兼容性问题
- 必要时联系依赖的维护者
-
模块导出检查:确保所有通过包导出公开引用的模块都不在排除列表中。任何被导出引用的模块都必须包含在发布包中。
-
测试发布:在正式发布前,使用JSR提供的预览或测试发布功能验证配置修改是否解决了问题。
最佳实践
为避免此类问题,建议开发者:
-
谨慎使用排除列表:只在确实需要时排除模块,并确保排除的模块不会被任何导出引用。
-
分层管理依赖:将开发依赖与生产依赖明确分开,避免生产依赖被错误排除。
-
持续集成测试:在CI流程中加入发布前的类型检查步骤,及早发现问题。
-
文档记录:对项目中的排除配置进行详细注释,说明每个排除项的原因。
通过以上分析和解决方案,开发者可以有效地解决JSR项目中的模块发布排除问题,确保包的顺利发布和稳定运行。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00