OpenWhisk项目Invoker组件更新与分布式部署实践
2025-06-02 02:42:31作者:温艾琴Wonderful
引言
在OpenWhisk这样的Serverless平台开发过程中,Invoker作为核心组件负责执行用户函数,其更新和部署流程尤为重要。本文将详细介绍如何正确更新Invoker组件代码并确保其在分布式环境中生效的完整实践过程。
问题背景
开发者在修改OpenWhisk的Invoker组件代码时,特别是FunctionPullingContainerProxy.scala文件中的日志输出内容后,发现即使重新构建了Docker镜像并重新部署,日志中的变更仍未生效。这种情况在分布式部署环境中尤为常见,需要特别注意部署流程中的各个环节。
问题分析
经过深入排查,发现问题根源在于分布式环境下的镜像部署机制:
- 多机部署架构:OpenWhisk采用了Controller和Invoker分离的架构设计,分别部署在不同机器上
- 镜像同步问题:在Controller机器上构建的Invoker镜像没有自动同步到Invoker节点
- 配置覆盖:Ansible部署配置中硬编码了使用nightly标签的镜像,覆盖了本地构建的镜像
解决方案
方案一:手动镜像传输
- 构建镜像:在Controller节点执行构建命令
./gradlew :core:invoker:clean :core:invoker:distDocker
- 导出镜像:将构建好的镜像保存为tar文件
docker save -o invoker.tar whisk/invoker:latest
- 传输镜像:将镜像文件复制到所有Invoker节点
scp invoker.tar user@invoker-machine:~
- 加载镜像:在各Invoker节点加载镜像
docker load -i ~/invoker.tar
- 重新部署:通过Ansible完成最终部署
cd ansible
sudo ansible-playbook -i environments/local openwhisk.yml
方案二:自动化Ansible部署
通过修改Ansible部署脚本实现自动化镜像同步:
- name: Save invoker Docker image
command: docker save -o /tmp/invoker.tar whisk/invoker:latest
delegate_to: localhost
run_once: true
- name: Copy invoker image to all Invoker machines
copy:
src: /tmp/invoker.tar
dest: /tmp/invoker.tar
- name: Load invoker Docker image on Invoker machines
command: docker load -i /tmp/invoker.tar
方案三:使用私有镜像仓库
更专业的做法是搭建私有Docker仓库:
- 构建时指定私有仓库地址
- 推送镜像到私有仓库
- 配置各节点从私有仓库拉取镜像
这种方法适合生产环境,可以实现更高效的镜像分发和管理。
最佳实践建议
- 开发环境:可以使用手动或Ansible自动化方案快速验证代码变更
- 测试环境:建议配置私有镜像仓库,模拟生产环境流程
- 生产环境:必须使用私有镜像仓库,并建立完善的镜像版本管理机制
- 配置管理:避免在部署脚本中硬编码镜像标签,使用变量控制
总结
OpenWhisk作为分布式Serverless平台,其组件更新需要考虑分布式环境的特点。通过本文介绍的几种方案,开发者可以灵活选择适合自己场景的Invoker更新方式。特别是对于生产环境,建立基于私有镜像仓库的部署流程,能够显著提高部署效率和系统可靠性。
理解这些部署机制不仅有助于解决当前问题,也为后续OpenWhisk的深度定制和扩展开发奠定了坚实基础。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
173
193
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
263
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
269
93
暂无简介
Dart
622
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
377
3.32 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
620
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1