OpenWhisk项目Invoker组件更新与分布式部署实践
2025-06-02 19:39:59作者:温艾琴Wonderful
引言
在OpenWhisk这样的Serverless平台开发过程中,Invoker作为核心组件负责执行用户函数,其更新和部署流程尤为重要。本文将详细介绍如何正确更新Invoker组件代码并确保其在分布式环境中生效的完整实践过程。
问题背景
开发者在修改OpenWhisk的Invoker组件代码时,特别是FunctionPullingContainerProxy.scala文件中的日志输出内容后,发现即使重新构建了Docker镜像并重新部署,日志中的变更仍未生效。这种情况在分布式部署环境中尤为常见,需要特别注意部署流程中的各个环节。
问题分析
经过深入排查,发现问题根源在于分布式环境下的镜像部署机制:
- 多机部署架构:OpenWhisk采用了Controller和Invoker分离的架构设计,分别部署在不同机器上
- 镜像同步问题:在Controller机器上构建的Invoker镜像没有自动同步到Invoker节点
- 配置覆盖:Ansible部署配置中硬编码了使用nightly标签的镜像,覆盖了本地构建的镜像
解决方案
方案一:手动镜像传输
- 构建镜像:在Controller节点执行构建命令
./gradlew :core:invoker:clean :core:invoker:distDocker
- 导出镜像:将构建好的镜像保存为tar文件
docker save -o invoker.tar whisk/invoker:latest
- 传输镜像:将镜像文件复制到所有Invoker节点
scp invoker.tar user@invoker-machine:~
- 加载镜像:在各Invoker节点加载镜像
docker load -i ~/invoker.tar
- 重新部署:通过Ansible完成最终部署
cd ansible
sudo ansible-playbook -i environments/local openwhisk.yml
方案二:自动化Ansible部署
通过修改Ansible部署脚本实现自动化镜像同步:
- name: Save invoker Docker image
command: docker save -o /tmp/invoker.tar whisk/invoker:latest
delegate_to: localhost
run_once: true
- name: Copy invoker image to all Invoker machines
copy:
src: /tmp/invoker.tar
dest: /tmp/invoker.tar
- name: Load invoker Docker image on Invoker machines
command: docker load -i /tmp/invoker.tar
方案三:使用私有镜像仓库
更专业的做法是搭建私有Docker仓库:
- 构建时指定私有仓库地址
- 推送镜像到私有仓库
- 配置各节点从私有仓库拉取镜像
这种方法适合生产环境,可以实现更高效的镜像分发和管理。
最佳实践建议
- 开发环境:可以使用手动或Ansible自动化方案快速验证代码变更
- 测试环境:建议配置私有镜像仓库,模拟生产环境流程
- 生产环境:必须使用私有镜像仓库,并建立完善的镜像版本管理机制
- 配置管理:避免在部署脚本中硬编码镜像标签,使用变量控制
总结
OpenWhisk作为分布式Serverless平台,其组件更新需要考虑分布式环境的特点。通过本文介绍的几种方案,开发者可以灵活选择适合自己场景的Invoker更新方式。特别是对于生产环境,建立基于私有镜像仓库的部署流程,能够显著提高部署效率和系统可靠性。
理解这些部署机制不仅有助于解决当前问题,也为后续OpenWhisk的深度定制和扩展开发奠定了坚实基础。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C090
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
473
3.52 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
223
90
暂无简介
Dart
721
174
Ascend Extension for PyTorch
Python
283
316
React Native鸿蒙化仓库
JavaScript
286
338
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
438
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
699
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19