NSHipster 项目解析:Objective-C 中的枚举器技术详解
2025-06-06 04:51:43作者:袁立春Spencer
在编程世界中,遍历集合是最基础也是最重要的操作之一。Objective-C 作为 C 语言和 Smalltalk 面向对象特性的结合体,提供了多种枚举集合的方式。本文将深入探讨 NSHipster 项目中关于 Objective-C 枚举器的技术细节,帮助开发者全面理解并选择最适合的枚举方式。
传统 C 语言循环
最基础的遍历方式是使用 C 风格的 for/while 循环:
for (NSUInteger i = 0; i < [array count]; i++) {
id object = array[i];
NSLog(@"%@", object);
}
这种方式虽然直接,但存在几个明显问题:
- 容易产生"差一错误"(off-by-one error)
- 代码冗长且重复
- 性能不是最优
现代 for/in 快速枚举
Objective-C 引入了更高级的 for/in 语法,这是基于 NSFastEnumeration 协议实现的:
for (id object in array) {
NSLog(@"%@", object);
}
NSFastEnumeration 协议解析
NSFastEnumeration 协议只定义了一个方法:
- (NSUInteger)countByEnumeratingWithState:(NSFastEnumerationState *)state
objects:(id *)stackbuf
count:(NSUInteger)len
这个看似简单的方法背后隐藏着复杂的实现细节:
- 状态管理:通过 NSFastEnumerationState 结构体维护枚举状态
- 缓冲区优化:使用 stackbuf 参数批量获取对象,提高性能
- 并发支持:内部实现可以并行加载对象
为什么快速枚举更快?
快速枚举的性能优势来自几个方面:
- 批量获取对象,减少方法调用开销
- 潜在的多线程优化
- 编译器层面的特殊优化
苹果官方推荐在可能的情况下优先使用快速枚举。
NSEnumerator:经典枚举器
在快速枚举出现之前,Objective-C 使用 NSEnumerator 进行集合遍历:
NSEnumerator *enumerator = [array objectEnumerator];
id object = nil;
while ((object = [enumerator nextObject])) {
NSLog(@"%@", object);
}
NSEnumerator 的核心方法:
nextObject:获取下一个对象allObjects:获取剩余所有对象
有趣的是,现代 NSEnumerator 也实现了 NSFastEnumeration 协议,这意味着你可以这样使用:
for (id object in enumerator) {
NSLog(@"%@", object);
}
NSEnumerator 的妙用
- 数组反转:
array.reverseObjectEnumerator.allObjects - 链式操作:通过第三方库实现类似 LINQ 的操作
- 随机枚举:使用 TTTRandomizedEnumerator 实现随机遍历
块枚举:灵活但稍慢的方式
随着块的引入,Objective-C 增加了基于块的枚举方式:
[array enumerateObjectsUsingBlock:^(id object, NSUInteger idx, BOOL *stop) {
NSLog(@"%@ at index %lu", object, idx);
if (shouldStop) {
*stop = YES; // 相当于 break
}
}];
块枚举的优势
- 索引信息:可以直接获取对象索引
- 提前终止:通过 stop 参数可以提前结束枚举
- 高级选项:支持并发和反向枚举
// 并发枚举示例
[array enumerateObjectsWithOptions:NSEnumerationConcurrent
usingBlock:^(id obj, NSUInteger idx, BOOL *stop) {
// 并行执行的代码
}];
性能对比与选择建议
- 性能排序:快速枚举 > 块枚举 ≈ NSEnumerator > C 循环
- 使用场景:
- 简单遍历:优先使用快速枚举
- 需要索引:考虑块枚举
- 特殊需求:反向/随机/链式操作
总结
Objective-C 的枚举技术演进展示了编程语言抽象的力量。从低级的指针操作到声明式的快速枚举,再到灵活的块枚举,每一代改进都带来了更好的性能和开发体验。
作为开发者,理解这些枚举方式的内部机制和适用场景,能够帮助我们编写出更高效、更易维护的代码。NSHipster 项目对这些技术的深入解析,为我们提供了宝贵的实践指导。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
523
3.71 K
Ascend Extension for PyTorch
Python
328
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
876
577
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
187
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
135